

AGESIC – Agencia para el Desarrollo del Gobierno de Gestión Electrónica y la Sociedad de la Información y del Conocimiento – IDEuy Infraestructura de Datos Espaciales del Uruguay

Consorcio Topocart – AT

TOPOCART – Topografia Engenharia e Aerolevantamentos S/S Ltda

AT S.R.L.

LICITACIÓN PÚBLICA INTERNACIONAL LPI N°. 01/2015 ADQUISICIÓN DE IMÁGENES DIGITALES DE COBERTURA NACIONAL

INFORME TÉCNICO FINAL

Contrato de Préstamo 2677/OC-UR

Programa de Infraestructura Vial II

Montevideo, Agosto de 2019.

ÍNDICE

1 INTRODUCCION	5
1.1 Informaciones Administrativas de Proy	vecto5
1.2 Consideraciones Generales	5
1.3 Localización del Área del Proyecto	9
1.4 Organización de las entregas finales	9
2 APOYO DE CAMPO	12
2.1 Sistema Geodésico Empleado	12
2.1.1 Referencial Planialtimétrico	12
2.1.1.1 SIRGAS-ROU 98	12
2.1.2 Referencial Altimétrico	12
2.2 Identificación y Distribución	12
2.2.1 Estaciones de Referencia	12
2.2.2 Vértices de Estación GNSS – Sopo	orte al Vuelo15
2.2.3 Apoyo Complementario	17
2.2.3.1 Ejecución del Apoyo Complem	entario17
2.2.3.2 Apoyo Complementario para el	l Control de Calidad18
2.2.3.3 Monografías de los Puntos de	Apoyo Complementario19
2.3 Levantamiento, Procesamiento y Ajust	te (GNSS)20
2.3.1 Levantamiento de los Vértices	20
2.3.2 Procesamiento y Ajuste	21
2.4 Compensación de la Altura (u Ondulado	ción) Geoidal21
2.4.1 Modelo de Ondulación Geoidal (EG	GM2008)21
2.5 Altura (u Ondulaciones) Geoidal	22
2.6 Resultados Obtenidos en el Apoyo de	Campo22
2.6.1 Vértices de Apoyo Complementario	o23
2.7 Control de Calidad	39
2.7.1 Verificación de los Equipamientos	40
, , , , , , , , , , , , , , , , , , ,	oo40
2.7.3 Datos obtenidos en la colecta de lo	s Puntos40

		2.7	.4 Procesamiento y Ajuste	.40
		2.7	.5 Datos Técnicos	.40
		2.7	.6 Monografías	.40
		2.7	.7 Informe Técnico de Apoyo Terrestre	.41
		2.8	Registros Control de Calidad y Entrega de Insumos	.41
	3	СО	BERTURA AEROFOTOGRAMÉTRICA	.44
		3.1	Planificación de la cobertura aerofotogramétrica	.44
		3.2	Ejecución de la Cobertura Aerofotogramétrica	.46
		3.3	Procesamiento Pos Vuelo	.51
		3.4	Procesamiento de las Imágenes	.51
		3.5	Elaboración del Fotoíndice	
		3.6	Registro Control de Calidad y Entrega Insumos	.55
	4	AEF	ROTRIANGULACIÓN	.58
		4.1	Registro Control de Calidad y Entrega Insumos	.64
	5	HID	ROGRAFÍA	.66
		5.1	Adquisición datos de Hidrografía	.66
		5.2	Edición de los datos de Hidrografía	.67
		5.3	Registro Control de Calidad y Entrega Insumos	.70
	6	GE	NERACIÓN DEL MODELO DIGITAL DE TERRENO (MDT) Y MODELO DIGITAL	DE
SUPE	RF	ICIE (MDS)	.71
		6.1	Modelo Digital de Terreno (MDT)	.71
		6.2	Modelo Digital de Superficie (MDS)	.75
		6.3	Registro Control de Calidad y Entrega de Productos	.76
	7	Ger	neración de Ortoimágenes	.78
		7.1	Ortorectificación	.78
		7.2	Mosaico, Tratamiento y Corte de las Hojas	.79
		7.3	Registro Control de Calidad y Entrega Productos	.80
	8	CUI	RVAS DE NIVEL	.82
		8.1	Generación de las Curvas de Nivel	.82
		8.2	Edición Cartográfica de las Curvas de Nivel	.83
	9	ÁRI	EAS URBANIZADAS	.85
	10) C	UENCAS HIDROGRÁFICAS	.87

10.1 Pre Análisis87
10.2 Mosaico Modelo Digital de Terreno88
10.3 Procesamiento88
10.4 Edición89
10.5 Integración91
10.6 Validación91
11 LIMITES APARENTES96
11.1 Datos fuentes96
11.2 Restitución fotogramétrica97
11.3 Edición98
ANEXO 01 – DEFINICIÓN Y REGLAS DE CAPTURA DE LAS CAPAS DE HIDROGRAFÍA
COBERTURA NACIONAL)103
ANEXO 02 – DENIFINICIÓN Y REGLAS DE CAPTURA DE LAS CAPAS DE HIDROGRAFÍA
COBERTURA URBANA)108
ANEXO 03 - CATÁLOGO DE OBJETOS HIDROGRAFÍA (archivos digitales)113
ANEXO 04 - CATÁLOGO DE OBJETOS CURVAS DE NIVEL Y PUNTOS ACOTADOS
archivos digitales)114
ANEXO 05 - CATÁLOGO DE OBJETOS ÁREAS URBANIZADAS (archivos digitales)115
ANEXO 06 - CATÁLOGO DE OBJETOS CUÉNCAS HIDROGRÁFICAS (archivos digitales)
116
ANEXO 07 - CATÁLOGO DE OBJETOS LÍMITES APARENTES (archivos digitales)117

1 INTRODUCCIÓN

1.1 Informaciones Administrativas de Proyecto

Contratante: AGESIC - Agencia para el Desarrollo del Gobierno de Gestión Electrónica y la

Sociedad de la Información y del Conocimiento

Contratada: Consorcio Topocart – AT

TOPOCART – Topografia Engenharia e Aerolevantamentos S/S Ltda

AT S.R.L.

Contrato: Licitación Pública Internacional LPI N°. 01/2015

Contrato de Préstamo 2677/OC-UR Programa de Infraestructura Vial II

Identificación: Adquisición de Imágenes Digitales de Cobertura Nacional

1.2 Consideraciones Generales

El presente informe describe las actividades implementadas en el marco del proyecto **Adquisición de Imágenes Digitales de Cobertura Nacional**, teniendo como objetivo detallar los procedimientos operacionales, criterios técnicos utilizados en la elaboración de los productos y resultados obtenidos.

En síntesis, el proyecto contempló 10 (diez) etapas principales, siendo ellas:

- Cobertura Aerofotogramétrica
- Apoyo de Campo
- Aerotriangulación
- Hidrografía
- Modelo Digital de Terreno (MDT) y Modelo Digital de Superficie (MDS)
- Ortoimagen
- Curvas de Nivel
- Áreas Urbanizadas
- Cuencas Hidrográficas
- Límites Aparentes

Para la ejecución de las etapas previstas en el proyecto fue necesario realizar una asignación significativa de recursos de modo de atender los plazos y requisitos establecidos por el contratante, siendo:

Tripulación

3 pilotos y 2 operadores de cámara. Trabajan con movilización de 40 días y descanso de 15 días

Avión con mantenimiento cada 100 horas. Total de vuelo 496,6 horas – Se realizan 4 mantenimientos durante el proyecto, en tanto la duración de la cobertura aérea es de 15 meses

Puntos de apoyo:

2 Agrimensores de empresa uruguaya

Total de puntos: 115 puntos nacionales y 556 puntos urbanos – trabajo realizado en 8 meses

Procesamiento de imágenes: 2.123 horas

Control de calidad de imágenes y productos del vuelo: 16.200 horas

Aerotriangulación
 3 técnicos fotogrametristas en Brasil – 22 meses - 11.600 horas

Restitución

Restitución fotogramétrica MDT: 89.000 horas Restitución fotogramétrica Hidrografía: 106.800 horas Restitución fotogramétrica Límites Aparentes: 12.200 horas

Digitalización de Centros Poblados: 1.800 horas

Generación de las Cuencas: 1.760 horas

Generación y edición de curvas de nivel: 6.400 horas

Ortofotos:

Nacional: 12.500 horas

Urbanas - True Ortho: 8.200 horas

Edición cartográfica y validación de la base de datos espacial: 19.000 horas

Reuniones gerenciales con IDEuy: 720 horas

• Total de mano de obra utilizada durante el período de mayor demanda: 180 personas

Las bases de datos utilizadas para el desarrollo de los trabajos son originadas por levantamiento aerofotogramétrico de todo el territorio nacional en la escala 1:10.000 y de gran parte de las áreas urbanas, considerando mapeamiento en la escala 1:1.000.

Un resumen de las informaciones técnicas del proyecto y presentado en la Tabla 01.

Tabla 01 - Resumen información técnica del proyecto

Información Técnica	Cobertura Nacional	Cobertura Urbana
Área	178.290 km²	1.235 km ²
Escala Mapeamiento	1:10.000	1:1.000
Resolución Espacial	0,32 m	0,10 m
Exactitud (x,y) - 95% de confiabilidad	1,00 m	0,20 m
Exactitud (z) - 95% de confiabilidad	1,50 m	0,30 m

Número de hojas de la articulación 6.597 2.790

La Cobertura Urbana contempla el mapeamiento de 86 localidades conforme a la relación presentada en la Tabla 02.

Tabla 02 - Relación de las localidades mapeadas en la Cobertura Urbana.

LOCALIDAD	DEPARTAMENTO	ÁREA (km²)	REMESA	CÓDIGO LOCALIDAD	CÓDIGO DEPARTAMENTO
MONTEVIDEO	MONTEVIDEO	283.10	1	MVD	UYMO
MALDONADO - PUNTA DEL ESTE - OTRAS	MALDONADO	170.33	2	MDO	UYMA
CIUDAD DE LA COSTA	CANELONES	76.91	3	CCA	UYCA
BARROS BLANCOS	CANELONES	21.91	3	BBS	UYCA
TOLEDO	CANELONES	5.53	4	TDO	UYCA
EMPALME OLMOS	CANELONES	2.09	4	EOS	UYCA
FRACCIONAMIENTO ANDALUZ	CANELONES	4.28	4	FY8	UYCA
JOAQUIN SUAREZ	CANELONES	3.24	4	JSZ	UYCA
LA PAZ - LAS PIEDRAS - PROGRESO	CANELONES	32.50	4	LPS	UYCA
PANDO	CANELONES	8.73	4	PDO	UYCA
SALINAS Y OTRAS	CANELONES	23.14	4	SAL	UYCA
SAN ANTONIO	CANELONES	0.71	4	SAO	UYCA
SAN BAUTISTA	CANELONES	1.23	4	SBA	UYCA
SAB JACINTO	CANELONES	1.70	4	SJO	UYCA
SAN RAMON	CANELONES	4.46	4	SRN	UYCA
SANTA LUCIA	CANELONES	4.35	4	SLA	UYCA
SANTA ROSA	CANELONES	1.36	4	SRA	UYCA
SAUCE	CANELONES	3.36	4	SCE	UYCA
CANELONES	CANELONES	6.29	4	CAN	UYCA
TALA	CANELONES	2.90	5	TLA	UYCA
SOCA	CANELONES	0.91	5	SCA	UYCA
SAN LUIS	CANELONES	3.83	5	SLS	UYCA
SAN CARLOS	MALDONADO	9.48	5	SCS	UYMA
PIRIAPOLIS Y OTRAS	MALDONADO	17.41	5	PIR	UYMA
PAN DE AZUCAR	MALDONADO	2.50	5	PDA	UYMA
MONTES	CANELONES	1.49	5	MON	UYCA
MINAS	LAVALLEJA	12.41	5	MIN	UYLA
MIGUES	CANELONES	1.12	5	MIG	UYCA
LA FLORESTA	CANELONES	2.93	5	LFA	UYCA
GARZON	MALDONADO	0.30	5	GZZ	UYMA
COSTA AZUL	CANELONES	2.13	5	CAZ	UYCA
ATLANTIDA - PARQUE DEL PLATA	CANELONES	21.42	5	ADA	UYCA
AIGUA	MALDONADO	1.39	5	AIG	UYMA
SOLIS	MALDONADO	2.28	5	SOL	UYMA
BELLO HORIZONTE	CANELONES	3.28	5		UYCA
CASTILLOS	ROCHA	4.47	6		UYRO
CHUY	ROCHA	3.36	6	СНҮ	UYRO
JOSE PEDRO VARELA	LAVALLEJA	5.39	6	JPV	UYLA
LASCANO	ROCHA	4.03	6		UYRO
MELO	CERRO LARGO	18.32	6		UYCL
RIO BRANCO	CERRO LARGO	9.22	6		UYCL
ROCHA	ROCHA	16.24	6	RCH	UYRO
SARANDI DEL YI	DURAZNO	5.18	6		UYDU
TREINTA Y TRES	TREINTE Y TRES	29.70	6		UYTT

VILLA DEL CARMEN	DURAZNO	2.45	6	VDC	UYDU
AGUAS CORRIENTES	CANELONES	1.27	7	ACS	UYCA
COLONIA DEL SACRAMENTO	COLONIA	18.41	7	CDS	UYCO
ECILDA PAULLIER	SAN JOSE	1.33	7	EPR	UYSJ
FLORIDA	FLORIDA	12.75	7	FDA	UYFD
JUAN LACAZE	COLONIA	5.85	7	JLL	UYCO
LIBERTAD	SAN JOSE	4.94	7	LIB	UYSJ
LOS CERRILLOS	CANELONES	1.01	7	LCS	UYCA
NUEVA HELVECIA	COLONIA	8.58	7	NHA	UYCO
VILLA RODRIGUEZ	SAN JOSE	1.09	7	RDZ	UYSJ
ROSARIO	COLONIA	5.97	7	ROS	UYCO
SAN JOSE DE MAYO	SAN JOSE	13.02	7	SJM	UYSJ
TARARIRAS	COLONIA	2.73	7	TAR	UYCO
CIUDAD DEL PLATA	SAN JOSE	17.85	7	CDP	UYSJ
COLONIA VALDENSE	COLONIA	2.23	7	CVE	UYCO
CARDONA - FLORENCIO SANCHEZ	SORIANO	5.05	8	CNA	UYSO
CARMELO	COLONIA	9.14	8	CLO	UYCO
DOLORES	SORIANO	7.65	8	DOL	UYSO
DURAZNO	DURAZNO	23.62	8	DZN	UYDU
MERCEDES	SORIANO	13.49	8	MER	UYSO
NUEVA PALMIRA	COLONIA	13.98	8	NPA	UYCO
OMBUES DE LAVALLE	COLONIA	2.19	8	ODL	UYCO
PASOS DE LOS TOROS - CENTENARIO	TACUAREMBO	11.31	8	PTS	UYTA
SARANDI GRANDE	FLORIDA	3.29	8	SGE	UYFD
TRINIDAD	FLORES	9.16	8	TRI	UYFS
YOUNG	RIO NEGRO	7.01	9	YOU	UYRN
TAMBORES	PAYSANDU	1.41	9	TAM	UYPA
TACUAREMBO	TACUAREMBO	20.86	9	ТВО	UYTA
PORVENIR	PAYSANDU	0.59	9	PVN	UYPA
PIEDRAS COLORADAS	PAYSANDU	0.44	9	PCS	UYPA
PAYSANDU	PAYSANDU	50.99	9	PSD	UYPA
GUICHON	PAYSANDU	3.29	9	GCH	UYPA
FRAY BENTOS	RIO NEGRO	15.19	9	FBS	UYRN
ARTIGAS	ARTIGAS	13.33	10	ART	UYAR
BELEN	SALTO	2.17	10	BEL	UYSA
BELLA UNION	ARTIGAS	4.32	10	BUN	UYAR
CHAPICUY	PAYSANDU	0.51	10		UYPA
LORENZO GREYRES	PAYSANDU	0.47	10		UYPA
QUEBRACHO	PAYSANDU	1.42	10		UYPA
RIVERA	RIVERA	32.52	10		UYRV
SALTO	SALTO	40.76	10		UYSA
TRANQUERAS	RIVERA	4.51	10		UYRV

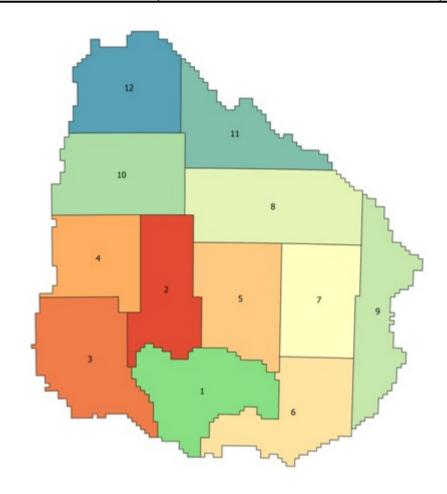
1.3 Localización del Área del Proyecto

Este trabajo tiene como área de estudio la Republica Oriental del Uruguay, situada en América del Sur, limitada al norte por la República Federativa del Brasil (estado de Rio Grande del Sur), al sur por el Rio de la Plata, al este por el Océano Atlántico y al oeste por la República Argentina.

La Figura 01 demuestra el límite geográfico del país y los respectivos confrontantes.

Figura 01 - Límite geográfico del área de estudio, confrontantes y localización de las áreas de la Cobertura Urbana (Fuente: Google Earth).

1.4 Organización de las entregas finales


De acuerdo al pliego, las entregas finales se realizaron por remesas. Una Remesa se define como un área pre diseñada que divide en 12 partes el territorio para la cobertura nacional y en 10 conjuntos la cobertura urbana. Cada remesa está compuesta por hojas, donde una hoja (ortoimagenmodelo digital), es un rectángulo generado en base a la cuadrícula definida por el Plan Cartográfico Nacional (PCN) Para las remesas nacionales la hoja corresponde a un polígono de aproximadamente 5x5 km y en las remesas urbanas la hoja corresponde a un polígono de 1x1 km.

A continuación, se representa la distribución de remesas de las coberturas nacional y urbana.

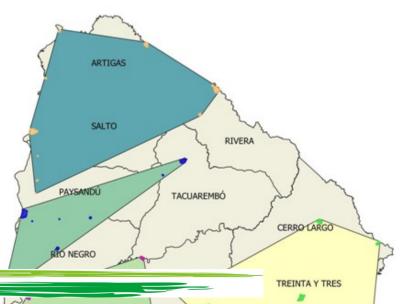


Figura 02 – Distribución geográfica de las remesas de cobertura nacional y urbana

2 APOYO DE CAMPO

2.1 Sistema Geodésico Empleado

2.1.1 Referencial Planialtimétrico

En este proyecto fue considerado como referencia básica las estaciones permanentes de la Red Geodésica Nacional Activa de Uruguay (REGNA-ROU), operadas por el Instituto Geográfico Militar.

Para la composición de los productos finales fue utilizado como referencial planimétrico SIRGAS-ROU98, adaptado para Uruguay. La definición de este sistema está dada por los parámetros presentados en el ítem Error: no se encontró el origen de la referencia.

2.1.1.1 SIRGAS-ROU 98

- Nomenclatura oficial: Sistema de Referencia Geocéntrico para las Américas;
- Sistema Geodésico de Referencia: Sistema de Referencia Terrestre Internacional -ITRS (International Terrestrial Reference System);
- Figura geométrica para la Tierra: Elipsoide del Sistema Geodésico de Referencia de 1980 (Geodetic Reference System 1980 - GRS80);
 - Semi-eje mayor a= 6.378.137 m; y
 - Achatamiento f= 1/298.257222101.
- Parámetros referentes al posicionamiento espacial del elipsoide:
 - Origen: Centro de masa de la Tierra (Geocéntrico); y
 - Orientación: Polos y meridiano de referencia consistentes en ±0.005" con las direcciones definidas por el BIH (Bureau International de l'Heure), en 1984,0.
- Época de Referencia de las coordenadas: 1995.41.

2.1.2 Referencial Altimétrico

El Referencial Altimétrico adoptado para el proyecto es un modelo geoidal EGM2008, modelo geopotencial de la Tierra que determina las Ondulaciones Geoidales.

La determinación de las Altitudes Geométricas de los vértices fue hecha a través de posicionamiento geodésico por receptores GNSS de doble frecuencia L1/L2. Para la compensación de las Ondulaciones Geoidales de los puntos levantados fue necesario utilizar el Modelo de Ondulaciones Geoidales EGM2008, posibilitando la conversión de las Altitudes Geométricas (elipsoide), en Altitudes Ortométricas (nivel medio de los mares).

2.2 Identificación y Distribución

2.2.1 Estaciones de Referencia

Para servir como referencia a los trabajos ejecutados, fueron utilizadas las estaciones REGNA-ROU del Instituto Geográfico Militar y se implantaron 37 vértices, siendo 5 vértices físicos fijos y 32 vértices virtuales.

Las Estaciones de Referencias utilizadas son presentadas en la Figura 03.

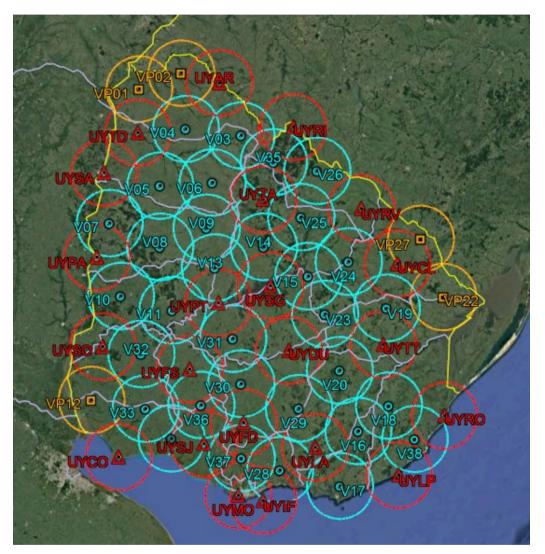


Figura 03 - Estaciones de Referencia utilizadas REGNA-ROU en rojo, Bases Fijas en naranja y Bases Virtuales en Azul Cyan.

Posteriormente a la identificación de las estaciones existentes, se planificó la ejecución de los trabajos. En esta planificación fueron relevadas las cuestiones relacionadas a la disponibilización de los archivos RINEX por el IGM, las informaciones presentadas en los reportes de las Estaciones Geodésicas, las coordenadas post procesadas de los vértices físicos fijos y las coordenadas determinadas de los vértices virtuales.

A partir de las Estaciones de Referencia se determinaron las coordenadas tridimensionales de todos los vértices implantados que fueron utilizados en el presente trabajo.

La Error: no se encontró el origen de la referencia3 muestra las coordenadas de las

Estaciones de Referencia utilizadas.

Tabla 3 - Lista de Coordenadas de los Vértices de Referencia REGNA-ROU utilizados.

Sistema	Sistema de Referencia - SIRGAS-ROU98 (época 1995.41 - ITRF1994) / Sistema de Coordenadas - Proyección UTM							
Vértic	COORDEN	IADAS UTM	COORDENADA	Altitud Elipsoidal				
е	Leste (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	(m)			
UYAR	548918,888	6635477,997	S30°24'42,2973"	O56°29'26,4521"	146,487			
UYCL	762144,518	6415610,040	S32°21'56,6690"	O54°12'50,4974"	134,706			
UYCO	423274,389	6186190,269	S34°27'46,7599"	O57°50'07,3740"	49,373			
UYDU	630092,709	6312821,370	S33°18'57,1923"	O55°36'08,7636"	164,944			
UYFD	574776,122	6226826,165	S34°05'48,0979"	O56°11'21,7245"	87,964			
UYFS	510503,717	6291503,141	S33°30'57,5353"	O56°53'12,8280"	165,577			
UYIF	597454,297	6132426,340	S34°56'45,5693"	O55°55'57,8975"	55,983			
UYLA	661038,891	6196229,571	S34°21'45,9949"	O55°14'55,6442"	148,386			
UYLP	761914,706	6161420,728	S34°39'20,5330"	O54°08'31,5485"	20,159			
UYMO	567629,266	6139091,900	S34°53'17,9507"	O56°15'35,5758"	158,083			
UYPA	399515,757	6426780,582	S32°17'28,5049"	O58°04'01,8792"	71,859			
UYPT	545893,884	6370715,985	S32°48'02,0259"	O56°30'35,3391"	91,152			
UYRI	637711,978	6581060,682	S30°53'44,7504"	O55°33'32,8120"	251,611			
UYRO	818223,002	6232378,405	S34°00'03,6246"	O53°33'17,3723"	59,008			
UYRV	718934,295	6482465,974	S31°46'20,6104"	O54°41'17,2135"	274,401			
UYSA	408732,282	6528420,175	S31°22'30,6252"	O57°57'35,2087"	79,071			
UYSG	608492,565	6390533,253	S32°37'02,7496"	O55°50'36,9757"	107,444			
UYSJ	526762,137	6201909,566	S34°19'25,4494"	O56°42'32,7424"	55,419			
UYSO	405590,117	6319290,718	S33°15'40,5482"	O58°00'49,0244"	80,791			
UYTA	600701,928	6494202,569	S31°40'59,0434"	O55°56'15,1200"	187,050			
UYTD	449899,529	6576234,504	S30°56'46,5800"	O57°31'28,2052"	75,700			
UYTT	744081,560	6318901,926	S33°14'28,6828"	O54°22'49,3032"	68,973			

La Error: no se encontró el origen de la referencia4 muestra las coordenadas de los Vértices Físicos Fijos utilizadas.

Tabla 4 - Lista de Coordenadas de los Vértices Físicos Fijos de Referencia utilizados.

Sistema de Referencia - SIRGAS-ROU98 (época 1995.41 - ITRF1994) / Sistema de Coordenadas - Proyección UTM									
Vértic Hus COORDENADAS UTM e o Este (m) Norte (m)			IADAS UTM Norte (m)	COORDENADA:	S GEODÉSICAS Longitud (° ' ")	Altitud Elipsoidal (m)	Altitud Ortométrica (m)		
VP01	-21	451715,74 4	6629256,81 5	S30°28'04,48556"	O57°30'10,79892	97,690	82,822		
VP02	-21	502861,71 5	6648011,12 6	S30°17'58,69908"	O56°58'12,86047	93,666	79,253		
VP12	-21	391297,41 6	6255304,87 0	S33°50'12,92128"	O58°10'29,37934 "	63,963	47,294		

Sistema de Referencia - SIRGAS-ROU98 (época 1995.41 - ITRF1994) / Sistema de Coordenadas - Proyección UTM									
Vértic e	Hus 0	COORDEN Este (m)			S GEODÉSICAS Longitud (° ' ")	Altitud Elipsoidal (m)	Altitud Ortométrica (m)		
VP22	-22	255392,55 7	6377441,88 5	S32°42'49,24832"	O53°36'34,93293	37,586	25,254		
VP27	-22	224662,61 2	6445926,78 6	S32°05'21,91724"	O53°55'02,21804 "	129,952	117,116		

La Error: no se encontró el origen de la referencia5 muestra las coordenadas de los Vértices Virtuales utilizadas.

Tabla 5 - Lista de Coordenadas de los Vértices Virtuales de Referencia utilizados.

		COOPDEA	IADAS UTM	COODDENADA	S GEODÉSICAS	
Vértic	Hus			COORDENADAS GEODÉSICA		
е	0	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	
		574965,97	6571539,14			
V03	-21	0	0	S30°59'14,34316	O56°12'53,4689	
		508088,93	6580086,95			
V04	-21	4	1	S30°54'45,16818	O56°54'55,2462	
		476641,77	6511886,80			
V05	-21	8	7	S31°31'39,72715	O57°14'45,7462	
		539937,90	6515048,66		0=000 440 0040	
V06	-21	5	6	S31°29'55,39113	O56°34'46,0218	
\	04	415168,19	6467464,44	004055100 00004	05705050 5400	
V07	-21	0	0	S31°55'32,00324	O57°53'50,5496	
1/00	04	476005,34	6438307,68	000011100 45400	OF704FI4 C 4000	
V08	-21	1	5	S32°11'29,45109	O57°15'16,4230	
١,٠٥٥	04	532277,07	6460445,52	004050100 70000	050000000000	
V09	-21	0	1	S31°59'29,72339	O56°39'29,9315	
\/10	21	428194,29	6379773,17	C00040100 00000	OF704FIFO 4100	
V10	-21	9	8	S32°43'02,92289	O57°45'58,4102	
1/11	01	490321,33	6362269,87	C220E2I20 C0C10	057000110 4700	
V11	-21	7	4	S32°52'39,60618	O57°06'12,4769	
1/12	21	542055,66	6412746,31 7	C2202E117 67027	OE6922100 7174	
V13	-21	7		S32°25'17,67027	O56°33'09,7174	
\/1.4	-21	601036,64	6437301,00 1	C22011146 71140	OEE0EE141 0104	
V14	-21	654344,52	6401623,84	S32°11'46,71140	O55°55'41,0184	
V15	-21	6	2	S32°30'43,10589	O55°21'24,6664	
V13	-21	713267,30	6215239,70	332 30 43,10309	033 2124,0004	
V16	-21	2	3	S34°10'55,32240	O54°41'09,2182	
V 10	-21	690696,02	6149023,96	334 1033,32240	034 41 03,2102	
V17	-21	030030,02 N	0143023,30 N	S34°46'59,38243	O54°54'57,1096	
V 11		750514,76	6245386,46	204 40 00,00240	OGT 0401,1030	
V18	-21	6	32-10000,-10	S33°54'07,79838	O54°17'26,7236	
		748609,05	6362722,30	200 0 107,10000	501 17 20,7200	
V19	-21	5	2	S32°50'43,52114	O54°20'37,3261	
		691337,02	6288544,09	,		
V20	-21	0	0	S33°31'32,09067	O54°56'22,7113	
		674123,01	6356114,39			
V23	-21	8	9	S32°55'09,70575	O55°08'16,3365	
		703122,71	6418779,79			
V24	-21	3	6	S32°20'58,07504	O54°50'29,5051	
	······································	646306,70	6472552,93			
V25	-21	0	0	S31°52'24,27039	O55°27'11,7152	
	: :	666199,80	6528112,65			
V26	-21	0	0	S31°22'10,67692	O55°15'08,7000	
	: :	618338,31	6169119,43			
V28	-21	0	8	S34°36'46,66124	O55°42'33,3097	

Sistema de Referencia - SIRGAS-ROU98 (época 1995.41 - ITRF1994) / Sistema de Coordenadas - Proyección UTM									
Vértic	Hus	COORDEN	IADAS UTM	COORDENADA	S GEODÉSICAS				
е	0	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")				
		641665,91	6243329,13						
V29	-21	9	3	S33°56'27,54814	O55°28'01,49407				
		572451,25	6273538,51						
V30	-21	2	9	S33°40'32,13945	O56°13'06,31414				
		562961,36							
V31	-21	9	9	S33°11'14,06475	O56°19'28,50864				
		452320,04	6310107,77						
V32	-21	6	7	S33°20'49,80226	O57°30'44,70835				
		456828,28							
V33	-21	2	3	S33°56'24,30168	O57°28'01,77824				
		487720,20	_ ′						
V34	-21	4	6	S34°15'58,19661	O57°08'00,20664				
		613741,96	6538835,03	00404045 05440	0==0.404.0.0=000				
V35	-21	9	6	S31°16'45,25418	O55°48'18,37902				
\	04	524075,24	6248311,46	00005414044034	050044100 54000				
V36	-21	0	9	S33°54'19,14821	O56°44'22,51382				
\	04	572175,00	6184004,98	004000150 00047	050040150 04054				
V37	-21	1	/	S34°28'58,88247	O56°12'50,31351				
\ (0 0	00	229300,79	6205017,57	004045100 70700	050050100 40400				
V38	-22	3	8	S34°15'38,78786	O53°56'23,42183				

2.2.2 Vértices de Estación GNSS - Soporte al Vuelo

En general, las soluciones de red buscan modelar y corregir errores o que aumente la precisión del cálculo de posicionamiento. Las fuentes de error más significativas son la ionosfera, la troposfera, las piedras orbitales y los relojes, entre otras.

La solución de red VRS genera una estación virtual calculada con base en las informaciones de una red de estaciones permanentes. Esta estación debe estar localizada dentro de la red de estaciones consideradas (célula) y el local donde es guardado queda a criterio del usuario.

El método usado de forma tradicional funciona a partir de un servidor denominado Ntrip Caster (del IGM), que colecta datos GNSS activamente, de las bases referenciadas en el Ntrip (bases REGNA-ROU del IGM) y conecta vía streaming (INTERNET) al Ntrip Client que equivale al GPS Rover, donde está el punto a ser levantado.

Esos datos recibidos corresponden al VRS generado en Ntrip Cáster, en la posición solicitada por el cliente.

El usuario puede determinar el local donde el servidor calcula el VRS y puede decodificar y codificar los dados recibidos, lo que es un potencial extra para ese tipo de solución.

Los datos que son entregados en formato RTCM 3 pueden ser decodificados y guardados en archivos RINEX, para uso posterior en el pos procesamiento y esto permite codificarlos nuevamente como si fuese una estación común y retransmitirlos, por ejemplo, en RTCM 3 o RTCM 2.

De esta manera, esa estación virtual comienza a comportarse como si fuese una estación (física) permanente para el usuario; sus productos pueden ser usados como tal.

Aunque la calidad de los datos no sea la misma de una estación real, pueden ser usados sin ningún inconveniente. Esas estaciones virtuales creadas a partir de células dentro de la red proporcionan datos de buena calidad entre las estaciones REGNA ROU.

Entonces, fue posible tener datos a tiempo real y para el pos proceso, de acuerdo con la necesidad. Finalmente, y sin perder de vista el alcance y sus limitaciones, con la infraestructura instalada, las redes de estaciones permanentes fueron "densificadas", y de esta forma se logró cubrir de forma homogénea toda el área del vuelo.

Las Estaciones de referencia virtuales utilizadas son presentadas en la Figura 04.

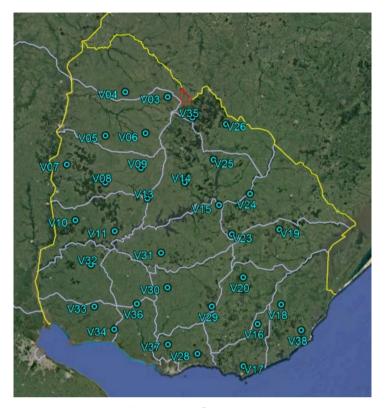


Figura 04 - Vértices Virtuales definidos para el apoyo al vuelo.

2.2.3 Apoyo Complementario

El Apoyo Complementario consiste en la determinación de los puntos utilizados en la etapa de aerotriangulación, junto a los puntos de control de calidad utilizados para el análisis posicional de los datos cartográficos.

La etapa consiste en la obtención de puntos medidos en el terreno que puedan ser identificados en las imágenes para "amarre" de los modelos fotogramétricos. Esto significa obtener las coordenadas de puntos perfectamente foto-identificables, que fueron previamente seleccionados en la superficie, en zonas preferentemente planas y con una distribución entre puntos que atiende las especificaciones para la escala del mapeamiento.

Posteriormente, los puntos de control de calidad fueron utilizados para la verificación de la calidad de los productos cartográficos.

Con una técnica de vuelo apoyada por sensores, en este caso receptores GNSS, se consigue determinar las coordenadas tridimensionales precisas de los centros perspectivos de cada fotografía, realizando el ajuste de los modelos durante el proceso de aerotriangulación. Las coordenadas de los centros perspectivos hacen parte del conjunto de parámetros a ser determinados X, Y, Z, ω (omega), φ (phi) y κ (kappa). Con ese procedimiento se reduce el número de puntos de Apoyo Complementario, aumentando la eficiencia y la calidad del proceso.

El Apoyo Complementario fue hecho por receptores GNSS, donde los puntos planimétricos (H) coincidirán con los puntos altimétricos (V), componiendo así los vértices utilizados en el control aerofotogramétrico.

Los puntos fueron tomados siguiendo las nomenclaturas:

- Puntos de Apoyo Complementario HV y GCP (Horizontal y Vertical): puntos foto identificables tomados sobre la superficie natural, siendo los GCP pre señalizados; y
- PC (Puntos de Control) para los puntos foto identificables tomados para análisis y control de los productos generados.

2.2.3.1 Ejecución del Apoyo Complementario

Los equipos de campo fueron movilizados para la colecta de puntos en aquellos elementos foto identificables, considerando sus características físicas. Se toman en posiciones que garanticen la confiabilidad de los resultados definidos para la Aerotriangulación. De tal forma, se pueden apoyar las fotografías aéreas a partir de las coordenadas obtenidas en un Sistema de Referencia Terrestre.

Las marcas de señalización fueron hechas antes de la Cobertura Aérea, de tal forma que las mismas fuesen visibles en las imágenes aéreas. En el caso de los levantamientos realizados después de la ejecución del vuelo, fueron seleccionados a partir de la identificación de características foto-identificables existentes en las imágenes.

Para el Apoyo Complementario de la Cobertura Nacional fueron tomados 115 puntos y para la Cobertura Urbana fueron tomados 431.

La Figura 05 muestra ejemplos de puntos foto-identificables pre señalizados (izquierda) y de puntos identificados posteriores a la obtención de las imágenes (derecha).

Figura 05 - Ejemplos de la colecta de Punto Pre Señalizado (izquierda) y Existente en la Superfície (derecha) para Apoyo Complementario.

La Figura 06 presenta la distribución de los puntos de Apoyo Complementario para la Cobertura Urbana.

Figura 06 - Distribución de los puntos de Apoyo Complementario para Cobertura Urbana.

2.2.3.2 Apoyo Complementario para el Control de Calidad

Fueron tomados puntos de verificación (Puntos de Control de Calidad) para la validación de los resultados en varias fases del mapeamiento.

En líneas generales, se eligen puntos que sean fotoidentificables, y que permitan controlar la calidad planimétrica y altimétrica.

La Figura 07 presenta ejemplo de PC.

Figura 07 - Ejemplo de la colecta de los Puntos de Control.

2.2.3.3 Monografías de los Puntos de Apoyo Complementario

Para cada Punto de Apoyo Complementario fue generada una Monografía detallada conteniendo los datos relevantes para futuras consultas.

En las monografías se incluyen las coordenadas geográficas en Sistema SIRGAS-ROU 98, coordenadas planas en el Sistema UTM, Altitud Geométrica y Ortométrica, fecha de determinación, fotografía de campo y aérea y las informaciones relativas a sus características.

La Figura 08 muestra un ejemplo de las monografías de los puntos de Apoyo Complementario.

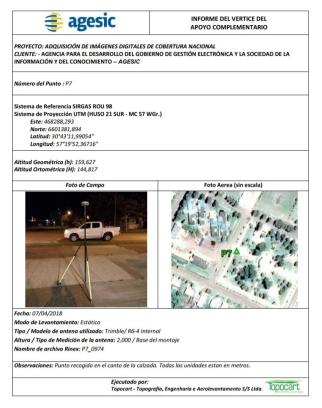


Figura 08 - Ejemplo de Monografias para los puntos de Apoyo Complementario y Control de Calidad (HV's / GCP's / PC's).

2.3 Levantamiento, Procesamiento y Ajuste (GNSS)

2.3.1 Levantamiento de los Vértices

El Levantamiento, Procesamiento y Ajuste consiste en el transporte de coordenadas geodésicas y de altitud para los vértices de la Red de Apoyo Básico y puntos de Apoyo Complementario.

Para eso, todos los puntos de interés fueron ocupados por receptores geodésicos, con tiempo de rastreo mínimo para la resolución de las ecuaciones de ambigüedades, posibilitando el cálculo de las coordenadas geodésicas de los mismos.

Todos los vértices fueron referenciados al Sistema Geodésico Uruguayo y, en consecuencia, a la Red Geodésica REGNA-ROU y ocupados por receptores geodésicos GNSS de doble frecuencia L1/L2.

Los vértices de Apoyo Básico utilizados fueron los disponibilizados por el Instituto Geográfico Militar – IGM.

Para los puntos de Apoyo Complementario fue utilizado el método diferencial, con uso de 1 vértice GNSS (Apoyo Básico implantado), tomando datos de forma simultánea.

La Figura 09 ilustra la formación de la red a través de la técnica empleada para los vértices de Apoyo Complementario.

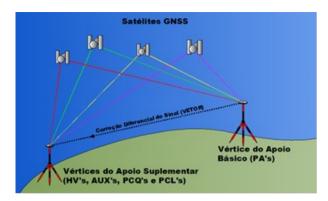


Figura 09 - Ejemplo de la metodologia de posicionamento relativo para los vértices de Apoyo Complementario.

Los vértices fueron tomados con un trípode para el bastón de soporte de las antenas, de modo de aumentar la estabilidad en la medición.

El tiempo de toma de los datos GNSS y la calidad de los puntos levantados cumplen con las siguientes especificaciones:

- Utilización de receptores L1/L2;
- Tiempo de rastreo mínimo para obtención de la solución aceptable para calidad de los vectores;
- Informaciones de las órbitas de los satélites (Precisas, Rápidas y/o Transmitidas) cuando sea necesario;
- Sistema de Referencia SIRGAS-ROU98, para procesamiento y ajuste de los datos;
- Número de satélites observados simultáneamente igual o superior a 5 (cinco):
- Precisión mínima de 5mm + ppm para distancias de líneas de base hasta 20 km y
 5 a 10mm + 2 ppm para líneas de base superiores a 20 km; y
- Menor número para los coeficientes de Dilución de la Precisión DOP de la geometría de los satélites.

2.3.2 Procesamiento y Ajuste

Los procesamientos de las determinaciones del Levantamiento Geodésico fueron realizados utilizándose el software Trimble Business Center, versión 3.03, siguiendo la descripción de la metodología y los especificados abajo:

- Sistema de Referencia SIRGAS-ROU98, para procesamiento, ajustamiento y entrega de los resultados;
- Por limitaciones del software utilizado, el procesamiento y ajuste no considera los valores de Sigma dados *a priori* por las Estaciones Base. Siendo así, el software de procesamiento admite como absolutas las coordenadas de los vértices adoptados como referencia;
- Utilización de vectores independientes;
- Los ruidos resultantes de los rastreos de los satélites fueron identificados y eliminados cuando los mismos influían significativamente en la media de la dispersión de las señales rastreadas;
- El procesamiento fue desarrollado adoptando la solución lono Free Fixed para las líneas de base menores a 50 km. Para las líneas de base mayores a 50 km fue adoptada la solución lono Free Float;

- Las redes formadas para determinación de las coordenadas tridimensionales de los vértices fueron ajustadas por el Método de los Mínimos Cuadrados – MMQ; y
- El ajuste fue validado mediante la realización de los test de precisión y tendencia (Test Qui-Quadrado y Test Tau) con nivel de confianza de 2 Sigmas (significancia de 95%), lo que corresponde a 1,96 veces el valor de la desviación estándar.

En el procesamiento de los vectores fueron analizadas las precisiones de las líneas de base obtenidas. Después del ajuste de las observaciones, como factores limitantes, fueron aceptados solamente los valores de precisión puntuales no superiores a 10 cm, tanto en la resultante de las componentes horizontales como en la altura geométrica.

2.4 Compensación de la Altura (u Ondulación) Geoidal

La altitud determinada por un receptor GNSS no está relacionada al nivel medio del mar, sino a un elipsoide de referencia con dimensiones específicas. Por tanto, se torna necesario conocer la Altura (u Ondulación) Geoidal (diferencia entre las superficies del geoide y elipsoide) para que la altitud encima del nivel medio del mar pueda ser obtenida.

La compensación de la Altura (u Ondulación) Geoidal es empleada para convertir las altitudes elipsoidales y poder referenciarlas al nivel medio de los mares con altitudes obtenidas sobre el geoide.

2.4.1 Modelo de Ondulación Geoidal (EGM2008)

"EGM2008 es un modelo armónico esférico de potencial gravitacional de la Tierra, obtenido por una combinación de mínimos cuadrados del modelo gravitacional ITG-GRACE03S y su matriz de covariancia de error asociado, con las informaciones gravitaciones obtenidas de un conjunto global de anomalías de gravedad de área-media y área-libre definidas en una grilla de 5 arco-minuto. Esta grilla fue tomada por la fusión terrestre, derivada de la altimetría y transportada por el aire de datos de gravedad. En áreas donde estaban disponibles solamente los datos de gravedad con menor resolución, sus contenidos espectrales fueron complementados con informaciones gravitacionales implícitas por la topografía. El EGM2008 está completo en grado y orden 2159 y contiene coeficientes adicionales hasta el grado 2190 y orden 2159. En áreas cubiertas con gravedad de alta calidad de datos, las discrepancias entre las ondulaciones del geoide EGM2008 y valores GPS de Nivelación son del orden de ±5 a ±10 cm. Las deflexiones verticales de EGM2008 sobre los EUA y la Australia están entre 1,1 y 1,3 arco-segundos de valores astrogeodésicos independientes. Esos resultados indican que el EGM2008 tiene un desempeño comparable al detallado en el modelo de geoides regionales. El EGM2008 tiene un desempeño igualmente bueno con otros modelos gravitacionales basados en GRACE para cálculos de órbita. EGM2008 representa un marco en la modelación global de campos gravitacionales, mostrando por primera vez, datos gravimétricos precisos y detallados, y un único modelo global que puede satisfacer los requisitos de una amplia gama de aplicaciones." (Pavlis, N. K., S. A. Holmes, S. C. Kenyon, and J. K. Factor (2012), The development and evaluation of the Earth Gravitational Model 2008 – EGM2008)

2.5 Altura (u Ondulaciones) Geoidal

La Altura (u Ondulaciones) Geoidal posibilita la conversión de la Altitud Geométrica (obtenida por receptores GNSS) a Altitud Ortométrica. Para la obtención de la Altura (u Ondulaciones) Geoidal fue utilizado el EGM2008. descrito anteriormente.

El cálculo de la Altitud Ortométrica fue realizado a través de la siguiente ecuación simplificada:

H=h-N

Donde:

H= Altitud Ortométrica;

h= Altitud Geométrica; e

N= Ondulación Geoidal.

La Figura 10 ilustra la obtención de la Altitud Ortométrica.

Figura 10 - Altura (u Ondulación) Geoidal.

2.6 Resultados Obtenidos en el Apoyo de Campo

Todos los vértices tuvieron sus componentes planimétricos y altimétricos (Altitudes Geométricas) obtenidos por las metodologías descritas en el ítem Error: no se encontró el origen de la referencia. Para el análisis de los resultados de procesamiento y ajuste, se consideraron las precisiones de los vectores procesados, los test estadísticos y las precisiones finales de las componentes.

Los vértices de Apoyo Básico fueron presentados en el ítem 2.2.1, describiendo todos los tipos de puntos para apoyo a los Levantamientos GNSS realizados para el proyecto de Apoyo Nacional y Urbano (Regna-ROU, Vértices Virtuales y Bases Fijas).

2.6.1 Vértices de Apoyo Complementario

La Tabla 6 presenta las coordenadas de los vértices implantados en el Apoyo Complementario (GCP's y HV's), utilizadas para el Apoyo Nacional de este trabajo.

Tabla 6 - Lista de Coordenadas de los vértices de Apoyo Complementario (GCP's y HV's).

Siste	Sistema de Referencia - SIRGAS-ROU98 (época 1995,41 - ITRF1994) / Sistema de Coordenadas - Proyección UTM								
Vértic	Hus	COORDEN	IADAS UTM	COORDENADA	S GEODÉSICAS	Altitud	Altitud Orto		
е	0	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	Elipsoidal (m)	métrica (m)		
P1	-21	443002,87 0	6652921,05 5	S30°15'14,37761"	O57°35'32,90481"	70,909	55,957		
P10	-21	575551,95 9	6610401,28 1	S30°38'11,90935"	O56°12'41,70404"	169,054	154,968		
P100	-21	737811,55 7	6155323,51 0	S34°42'59,44018"	O54°24'11,28116"	48,714	36,494		
P101	-22	242055,73 6	6197302,96 6	S34°20'00,62993"	O53°48'13,59985"	15,004	3,806		
P102	-22	237619,28 3	6211195,82 8	S34°12'26,12653"	O53°50'51,80398"	52,931	41,357		
P103	-21	679731,52 9	6154721,91 0	S34°44'01,68549"	O55°02'12,65254"	29,203	15,772		
P104	-21	774657,62	6227939,42	S34°03'11,84899"	O54°01'28,12314"	206,425	193,762		

/értic	Hus		IADAS UTM		S GEODÉSICAS	Altitud	Altitud Orto
е	0	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	Elipsoidal (m)	métrica (m)
P105	-21	774766,83 1	6180600,82 3	S34°28'46,58343"	O54°00'29,60497"	36,444	24,893
P106	-21	781445,19 6 576646,63	6463103,32 2 6545546,40	S31°55'59,38361"	O54°01'23,11788"	140,625	127,543
P11	-21	4 521618,30	0 6543795,03	S31°13'18,19469"	O56°11'42,99536"	362,205	347,025
P12	-21	4 520428,72	1 6593899,08	S31°14'23,42505"	O56°46'22,72781"	147,649	132,456
P13	-21	3 576689,95	2 6581138,69	S30°47'15,95669"	O56°47'11,33620"	147,324	132,599
P14	-21	9 610298,56	5 6565054,23	S30°54'02,14332"	O56°11'51,07927"	310,416	295,769
P15	-21	7 633975,83	6 6583636,28		O55°50'38,93308"	385,571	370,979
P16	-21	5 666881,88	6 6543773,56	S30°52'22,65493"		231,229	217,041
P17	-21	9 618869,70	1 6546829,42		O55°14'52,30784"	203,606	189,325
P18	-21	7 470251,01	0 6467133,90		O55°45'07,90570"		156,178
P19 P2	-21 -21	8 469761,29 8	7 6648587,75 3	S31°55'52,74566" S30°17'38 61849"	O57°18'52,98404" O57°18'52,03744"	144,433 81,280	128,098 66,579
P20	-21	471799,27 5	6439666,64 8		O57°17'56,91840"		56,956
P21	-21	424210,71 5	6440548,07 4		O57°48'13,85519"		54,457
P22	-21	395854,22 5	6438685,19 7	S32°11'00,74248"	O58°06'17,16961"	36,943	19,893
P23	-21	415453,92 1	6496648,09 9	S31°39'44,32240"	O57°53'30,55577"	66,507	49,975
P24	-21	505503,30 4	6472503,38 6	S31°52'59,70591"	O56°56'30,51622"	224,280	208,088
P25	-21	578145,46 3 578150 20	6479207,37 0 6438928.40	S31°49'12,37002"	O56°10'27,45791"	179,108	163,480
P26	-21	578159,29 3 525423,78	6438928,40 8 6441374,74		O56°10'15,18244"		138,689
P27	-21	7 548462,47	:		O56°43'49,28864"		148,088
P27A P28	-21 -21	4 622884,01 0	2 6485600,27 2		O56°29'04,43130" O55°42'08.87329"	133,601 170,758	117,333 155,619
P29	-21	680043,01 2	į		O55°05'52,66298"		146,358
P3	-21	468873,92 7	6543478,56 7		O57°19'36,74116"		92,960
P30	-21	679225,65 5	6439059,44	S32°10'14,53613"	O55°05'56,96625"	126,981	112,317
31_B	-21	621411,26 5 679973,13	4	S32°11'18,60704"	O55°42'43,28084"	135,741	120,561
P32	-21	3 735904,55	6534716,51 1 6510753,27	S31°18'28,89217"	O55°06'31,84962"	240,436	226,135
P33	-21	735847,98	1	S31°30'50,53757"	O54°30'57,04425"	150,304	136,494
P34	-21	3 768497,80	7	S31°39'45,08639"	O54°30'44,98901"	145,968	132,166
P35	-21	2	3	S31°52'16,79883"	O54°09'42,78413"	294,006	280,735

/értic	Hus	COORDEN	IADAS UTM	COORDENADA	S GEODÉSICAS	Altitud	Altitud Orto
е	0	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	Elipsoidal (m)	métrica (m)
		8	9				
P37	-21	782029,38 3	6438939,35 5	S32°09'02,59713"	O54°00'35,42935"	174,131	161,114
		782017,07	6438950,55				
P37-A	-21	3	2	S32°09'02,24508"	O54°00'35,91053"	173,726	160,707
P38	-21	728172,82 4	6440388,79 8	S32°08'59.49881"	O54°34'50,52594"	149,340	135,485
		718619,88	6480935,81			· · · · · · · · · · · · · · · · · · ·	
P39	-21	9	3	S31°47'10,48577"	O54°41'27,92301"	241,499	227,342
P4	-21	416714,12 9	6543313,65 0	S31°14'29,07340"	O57°52'28,59129"	62,977	46,586
		396520,70	6420083,74				
P40	-21	2	0	S32°21'04,97503"	O58°05'59,00073"	32,604	15,393
P41	-21	393996,56 0	6384918,15 3	S32°40'05,93487"	O58°07'49,82207"	28.554	11,315
		377509,59	6335036,91	002 40 00,00401	000 01 40,02201	20,004	11,010
P42	-21	1	7	S33°06'59,20478"	O58°18'46,50818"	38,226	21,032
P43	-21	438116,62 1	6380054,76 9	S32°42'55,94703"	O57°39'37,20126"	91,640	74.532
1 40		469480,78	6386533,31	302 42 30,347 00	007 0007,20120	31,040	14,552
P44	-21	7	7	S32°39'30,29641"	O57°19'31,63351"	103,035	86,207
P45	-21	470310,34 5	6333688,41	S33°08'06,43137"	O57°19'05,90853"	82,188	65,072
.F4J	-21	414564,17	6332972,88	333 00 00,43137	037 1900,90033	02,100	05,072
P46	-21	0	2	S33°08'19,00662"	O57°54'57,58078"	41,890	24,597
P47	-21	518154,83 4	6332993,33 4	S33°08'29,91891"	O56°48'19,23924"	115,015	98,129
F41	-21	518247,96	6332655,56	333 06 29,91091	030 46 19,23924	113,013	90,129
P47_1	-21	0	6	S33°08'40,88145"	O56°48'15,62031"	119,385	102,500
D40	21	577239,38	6333019,81	C22900110 C0712II	OFC010 10 70000	146.461	100.050
P48	-21	2 521058,85	9 6390480,87	S33°08'19,69712"	O56°10'18,76296"	146,461	130,256
P49	-21	0	7	S32°37'22,89526"	O56°46'31,86740"	136,699	120,200
DE	-21	419830,94	6624651,55	C20°20'27 04400"	OE79E0107 7630011	FF 740	40.400
P5	-21	3 578282,90	3 6395548,04	S30°30'27,94409"	O57°50'07,76308"	55,742	40,480
P50	-21	5	0	S32°34'29,09669"	O56°09'57,54869"	111,316	95,374
DE1	01	633136,58	6378008,48	C22942120 672EE!	OFF 924 4F 14147"	170 201	154.004
P51	-21	9 680241,12	9 6387321,55	532 43 39,07255	O55°34'45,14147"	170,281	154,884
P52	-21	0	7	S32°38'13,27180"	O55°04'42,71633"	190,749	175,699
DE2	21	679978,76	6334801,51	C22°06'27 00006"	OFF *04:1F 0F217"	270 205	255 205
P53	-21	2 625027,91	5 6334214,91	S33°06'37,99806"	O55°04'15,95217"	270,395	255,285
P54	-21	2	1	S33°07'24,84808"	O55°39'35,19542"	177,610	161,965
P55	-21	725838,82 7	6388753,35 1	S32°36'56,65766"	O54°35'35.21221"	231,907	217,600
ru0	-21	780949,58	6385311,12	332 30 30,03700	034 33 35,21221	231,907	Z11,000
P56	-21	3	4	S32°38'02,85279"	O54°00'19,29699"	69,249	56,153
P57	-22	220828,97 4	6333921,66 9	S33°05'51,02960"	O53°59'28,38847"	47,533	34,191
r31	-22	4 220204,25	9 6333401,19	JJJ UJ J1,UZ90U	000 08 20,38841	41,505	34,191
P57B	-22	9	3	S33°06'07,32901"	O53°59'53,03039"	39,300	25,948
P58	-21	729526,99 6	6335234,02 7	S33°05'50,31913"	O54°32'26,00734"	200,003	185,653
r 30	-21	276351,77	6390713,15	JJJ UJ JU,31913	034 32 20,00734	200,003	100,003
P59	-22	3	5	S32°35'54,67000"	O53°22'59,11872"	20,220	9,393
P6	-21	449724,32 3	6576124,63 6	S30°56'50,12196"	O57°31'34,82777"	62,386	47.118
ΓÜ	-21	288306,46	6374613,74	JJU JU JU,12190	USI 3134,82111	UZ,30U	41,118
P60	-22	8	7	S32°44'45,55726"	O53°15'33,99922"	15,795	4,096
P61	-22	246623.88	6336008,42	S33°05'06,11287"	O53°42'52,34518"	21,745	8,873

Vértic	Hus	COORDEN	IADAS UTM		S GEODÉSICAS	Altitud	Altitud Orto
е	0	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	Elipsoidal (m)	métrica (m)
		0 244491,39	8 6372206,00				
P62	-22	7	9	S32°45'30,18402"	O53°43'38,40146"	44,090	31,453
P63	-21	385917,99 6	6288060,81 1	S33°32'27,54669"	O58°13'43.47988"	25.612	8,549
1 00		381558,77	6239078,61	000 0227,04000	030 10 10,17300	20,012	0,040
P64	-21	414740.00	7	S33°58'55,86113"	O58°16'56,09073"	28,522	12,113
P65	-21	414749,80 5	6229507,81 1	S34°04'18,15650"	O57°55'26,05592"	104,677	88,266
		468287,72	6229307,72				
P66	-21	5 425041,94	9 6291762,68	S34°04'35,42525"	O57°20'37,34879"	115,222	98,822
P67	-21	423041,34	2	S33°30'39,82893"	O57°48'25,51475"	111,943	94,878
DCO	04	470052,79	6293197,59	C00000104 40007II	057040100 6700011	440.545	100.000
P68	-21	2 511332,61	5 6286267,77	S33°30'01,19097"	O57°19'20,67933"	119,545	102,688
P69	-21	2	7	S33°33'47,49950"	O56°52'40,45738"	160,024	143,431
D7	-21	468288,29 3	6601381,89 4	C20°42'11 000E4"	O57°19'52,36716"	159,627	144,817
P7	-ZI	573257,33	4 6270605,76	S30°43'11,99054"	031 1932,30110	139,027	144,817
P70	-21	4	8	S33°42'07,15700"	O56°12'34,14043"	139,767	123,623
P71	-21	576354,62 0	6227358,95 1	S34°05'30.39066"	O56°10'20,29465"	94,370	78,619
	<u> </u>	527634,83	6229212,13	CO+ 00 00,00000	000 1020,20400	J - ,570	10,013
P72	-21	7	5	S34°04'38,94526"	O56°42'01,73162"	148,158	131,905
P72B	-21	534550,31 9	6225418,03 3	S34°06'41.38812"	O56°37'31,36225"	101,453	85,281
		623871,93	6230089,89			, .00	
P73	-21	7	6	S34°03'45,37069"	O55°39'27,71245"	153,663	138,210
P74	-21	677993,78 6	6229600,87 7	S34°03'33,15263"	O55°04'16,93108"	218,661	203,855
		677530,54	6288667,11				
P75	-21	0 618543,30	4 6291017,28	S33°31'36,67952"	O55°05'17,74534"	289,565	274,468
P76	-21	6	6	S33°30'49,82211"	O55°43'24,98227"	167,417	151,653
D7C 4	04	618517,67	6287031,06	C229221F2 22F22"	OFF040104 07000"	100 707	104.040
P76 <u>1</u>	-21	6 730051,99	4 6295213,18	533°32'59,23508"	O55°43'24,07382"	139,797	124,040
P77	-21	1	8	S33°27'28,26089"	O54°31'29,18431"	79,578	65,357
D70	21	758266,98	:	C220/10/20 7/26/4/1	OE/910/E1 E7610/	AE OE1	21 662
P78	-21	4 222884,62	4 6284308,01	333 4U 28,743b4"	O54°12'51,57619"	45,851	31,662
P79	-22	3	8	S33°32'41,78249"	O53°59'03,93433"	29,463	15,475
P8	-21	505456,02 9	6668132,25 2	\$30°07'04 08002"	O56°56'36,10689"	91,715	77.439
1 0	- <u>C</u> 1	226314,53	;	330 07 04,30033	030 30 30,10009	31,113	11,433
P80	-22	6	5	S34°02'00,02682"	O53°57'51,47297"	187,146	174,671
P81	-21	737910,05 6	6229526,20 6	S34°02'52 75065"	O54°25'21,49633"	111,522	97.863
, OT	<u> </u>	253743,59	6298503,30	30- 02 02,10000		,022	37,000
P82	-22	9	4	S33°25'28,57357"	O53°38'54,66517"	18,348	4,826
P83	-22	279285,13 9	6263066,08 6	S33°44'58.25402"	O53°22'58,08500"	15,057	3,395
		262950,98	6230432,34				
P84A	-22	0 20/150 55	1 6228052 40	S34°02'24,06258"	O53°34'04,06641"	47,782	36,662
P85	-21	394159,55 5	6228952,40 5	S34°04'29,41770"	O58°08'49,50466"	52,844	36,498
		401428,09	6214468,40				
P85A	-21	7 426611,34	5 6189750,69	S34°12'22,14903"	O58°04'11,88038"	21,479	5,338
P86	-21	3	0	S34°25'52,05384"	O57°47'55,48817"	35,022	19,090
P87	-21	: :	6200457 60	S34°20'12 13212"	O57°20'24,56703"	47,086	31,031

Vértic Hus		COORDEN	IADAS UTM	COORDENADA	S GEODÉSICAS	Altitud	Altitud Orto	
е	0	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	Elipsoidal (m)	métrica (m)	
		7	7					
		458683,82	6191668,80					
P88	-21	0	3	S34°24'56,19678"	O57°26'58,54983"	35,830	19,850	
		527190,33	6201228,39					
P89	-21	2	9	S34°19'47,52403"	O56°42'15,90889"	49,654	33,762	
		548786,50	6634500,85					
P9	-21	2	9	S30°25'14,05921"	O56°29'31,24953"	121,938	107,895	
		574809,49	6189185,34					
P90	-21	0	4	S34°26'10,03929"	O56°11'08,66815"	47,031	31,911	
		504546,33	6174024,99					
P91	-21	8	7	S34°34'31,94975"	O56°57'01,55742"	29,589	13,723	
		560003,07	:					
P92	-21	2	1	S34°49'08,71346"	O56°20'38,00348"	38,815	24,008	
		576705,71	6133818,47					
P93	-21	1	0	S34°56'06,80200"	O56°09'36,27557"	22,445	8,175	
		607279,70	6151563,32					
P94	-21	1	2	S34°46'20,87034"	O55°49'39,42612"	37,172	22,965	
		626336,28	6182611,79					
P95	-21	5	4	S34°29'25,32172"	O55°37'26,55297"	96,852	82,267	
		662255,34	6193869,49					
P96	-21	3	8	S34°23'01,89713"	O55°14'06,43568"	137,795	123,109	
		678074,05	6138587,96	0040504040540	05500005 400000	00.074	7.040	
P97	-21	3	6	S34°52'46,19719"	O55°03'05,48026"	20,674	7,616	
D00	01	705772,25	6213024,12	C04040140 C0400	OF 49 4FIFO 00000	111 101	07.005	
P98	-21	3	8	S34°12'12,62439"	O54°45'59,89988"	111,121	97,005	
D00	01	745703,68	6179971,80	00400000 00045"	OF 404 0107 04 0 40"	05.050	00.000	
P99	-21	0	5	S34°29'33,39245"	O54°19'27,01843"	35,658	23,023	
DC120	21	444021,41	6208177,87	C2491EIE7 7E2C4II	OE7936130 040631	114 047	00.000	
PC138	-21	8	8	S34°15'57,75264"	O57°36'29,04863"	114,247	98,068	
PC41	-21	741646,76 1	6318117,20 8	S33°14'56,10906"		50,344	36,450	

La Tabla 7 presenta las coordenadas de los vértices implantados en el Apoyo Complementario (GCP's y HV's), utilizadas para el Apoyo Urbano de este trabajo.

Tabla 7 - Lista de Coordenadas de los vértices de Apoyo Complementario (GCP's y HV's).

		COORDEI	VADAS UTM	COORDENADAS GEODÉSICAS		Altitud Elipsoida	Altitud Ortométric	
értice	Huso	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	l (m)	a (m)	Ciudades
379	-21	555623,24 9	6180392,312	S34°30'59,85815"	O56°23'38,35465"	24,061	8,758	AGUAS CORRIENTES
380	-21	555179,34 2	6179504,119	S34°31'28,77807"	O56°23'55,55752"	23,989	8,694	AGUAS CORRIENTES
381	-21	556683,20 0	6178328,813	S34°32'06,63818"	O56°22'56,28904"	29,210	13,968	AGUAS CORRIENTES
382	-21	557060,10 7	6179314,214	S34°31'34,57372"	O56°22'41,74134"	32,222	16,969	AGUAS CORRIENTES
496	-21	705961,75 6	6213797,751	S34°11'47,39146"	O54°45'53,16313"	101,853	87,730	AIGUA
497	-21	707055,22 3	6212890,307	S34°12'16,05046"	O54°45'09,68917"	114,432	100,355	AIGUA
498	-21	705320,65 0	6213231,852	S34°12'06,20616"	O54°46'17,71095"	103,021	88,888	AIGUA
499	-21	706184,78 1	6212132,568	S34°12'41,25483"	O54°45'43,02719"	121,438	107,348	AIGUA
498A	-21	705531,27 5	6213272,366	S34°12'04,74224"	O54°46'09,52153"	104,703	90,576	AIGUA
118	-21	546836,15 9	6637042,954	S30°23'51,75700"	O56°30'44,76584"	133,168	119,134	ARTIGAS
119	-21	549594,59 7	6637833,904	S30°23'25,66554"	O56°29'01,52907"	115,457	101,457	ARTIGAS

	Siste					4) / Sistema Altitud	ae Cooraenaa Altitud	as - Proyección UTM
			VADAS UTM		S GEODÉSICAS	Elipsoida	Ortométric	
Vértice	Huso	Este (m) 552326,41	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
120	-21	9	6638347,385	S30°23'08,56933"	O56°27'19,25511"	128,073	114,099	ARTIGAS
121	-21	552392,04 2	6633077,875	S30°25'59,73958"	O56°27'15,84444"	137,593	123,572	ARTIGAS
122	-21	549529,31 8	6634184,789	S30°25'24,21765"	O56°29'03,35220"	134,205	120,166	ARTIGAS
123	-21	550978,63 3	6636286,367	S30°24'15,72982"	O56°28'09,39475"	140,444	126,441	ARTIGAS
114	-21	426438,10 3	6592905,410	S30°47'40,65946"	O57°46'08,04535"	62,038	46,658	BELEN
115	-21	424941,17 2	6593279,763	S30°47'28,16238"	O57°47'04,26993"	51,158	35,760	BELEN
116	-21	425221,45 7	6594565,759	S30°46'46,45482"	O57°46'53,38657"	55,394	40,022	BELEN
117	-21	426754,87 2	6594442,461	S30°46'50,80385"	O57°45'55,73112"	70,487	55,137	BELEN
115A	-21	425017,11 2	6593612,161	S30°47'17,38284"	O57°47'01,32516"	52,766	37,375	BELEN
116-AUX	-21	425266,18 7	6594555,154	S30°46'46,80942"	O57°46'51,70658"	57,408	42,036	BELEN
117-AUX	-21	426848,15 9	6594576,547	S30°46'46,46923"	O57°45'52,18716"	67,641	52,295	BELEN
110	-21	441560,29 0	6653269,912	S30°15'02,79754"	O57°36'26,81573"	54,513	39,538	BELLA UNION
111	-21	441315,89 7	6650711,020	S30°16'25,88184"	O57°36'36,47434"	54,684	39,706	BELLA UNION
112	-21	444881,25 7	6652506,875	S30°15'28,14522"	O57°34'22,69427"	59,464	44,540	BELLA UNION
113	-21	444035,55 7	6654342,010	S30°14'28,39011"	O57°34'53,99011"	76,286	61,348	BELLA UNION
110-AUX	-21	441946,20 1	6653862,070	S30°14'43,62771"	O57°36'12,25805"	55,223	40,253	BELLA UNION
111-AUX	-21	442023,43 2	6650580,628	S30°16'30,24033"	O57°36'10,01929"	60,352	45,386	BELLA UNION
HV55	-21	444437,81 0	6654927,242	S30°14'09,44496"	O57°34'38,82871"	75,166	60,232	BELLA UNION
HV56	-21	443305,14 7	6651686,476	S30°15'54,53465"	O57°35'21,83321"	70,440	55,494	BELLA UNION
HV57	-21	442667,62 8	6652826,680	S30°15'17,38652"	O57°35'45,46793"	68,576	53,619	BELLA UNION
HV58	-21	442079,97 3	6651842,469	S30°15'49,25856"	O57°36'07,65293"	64,081	49,115	BELLA UNION
369	-21	564550,25 6	6181513,163	S34°30'21,59572"	O56°17'48,54851"	28,826	13,674	CANELONES
370	-21	568073,67 2	6180278,656	S34°31'00,85412"	O56°15'30,02648"	35,704	20,645	CANELONES
371	-21	566578,57 0	6177102,572	S34°32'44,31044"	O56°16'27,76863"	39,849	24,820	CANELONES
372	-21	564538,63	6176942,192	S34°32'49,98513"	O56°17'47,75690"	50,110	35,046	CANELONES
373	-21	5 565610,22	6179741,782	S34°31'18,85857"	O56°17'06,49172"	35,619	20,523	CANELONES
189	-21	465995,22	6253514,937	S33°51'29,21573"	O57°22'03,41014"	177,533	160,909	CARDONA
190	-21	467577,91	6252040,923	S33°52'17,25374"	O57°21'02,01095"	180,279	163,673	CARDONA
191	-21	465587,43	6249635,776	S33°53'35,11703"	O57°22'19,82709"	173,877	157,278	CARDONA
192	-21	463809,86 8	6251375,435	S33°52'38,41941"	O57°23'28,77578"	187,171	170,552	CARDONA
193	-21	465907,58	6251688,246	S33°52'28,51481"	O57°22'07,07552"	191,249	174,637	CARDONA
193-AUX	-21	9 465891,13 o	6251819,710	S33°52'24,24451"	O57°22'07,69747"	191,852	175,239	CARDONA
180	-21	380189,19	6239792,026	S33°58'32,14456"	O58°17'49,10466"	28,871	12,454	CARMELO
181	-21	3 381724,07 7	6240123,320	S33°58'22,01707"	O58°16'49,14122"	28,953	12,529	CARMELO
182	-21	7 382319,28	6235395,072	S34°00'55,73710"	O58°16'28,24290"	25,009	8,649	CARMELO

	Siste					4) / Sistema Altitud	de Coordenada Altitud	as - Proyección UTM
		COORDEI	VADAS UTM		S GEODÉSICAS	Elipsoida	Ortométric	
Vértice	Huso	Este (m) 380472,48	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
183	-21	5	6235939,243	S34°00'37,32149"	O58°17'39,96346"	19,847	3,485	CARMELO
184	-21	381443,16 3	6237395,279	S33°59'50,45530"	O58°17'01,41724"	29,067	12,683	CARMELO
182A-AUX	-21	382216,07 8	6235727,104	S34°00'44,91762"	O58°16'32,10469"	27,212	10,848	CARMELO
182-AUX	-21	382313,34 1	6235391,194	S34°00'55,86058"	O58°16'28,47646"	25,082	8,722	CARMELO
315	-22	235454,41 5	6213640,415	S34°11'04,88666"	O53°52'13,60852"	72,883	61,176	CASTILOS
316	-22	234638,53 1	6211476,751	S34°12'14,29903"	O53°52'47,82991"	50,752	39,056	CASTILOS
317	-22	237899,41 1	6210500,532	S34°12'48,92668"	O53°50'41,62884"	63,271	51,721	CASTILOS
318	-22	239155,33 4	6212646,746	S34°11'40,46605"	O53°49'50,27774"	65,302	53,757	CASTILOS
316-AUX	-22	235410,73 7	6211795,371	S34°12'04,67452"	O53°52'17,34209"	29,160	17,489	CASTILOS
130	-21	415169,18 2	6497157,164	S31°39'27,71417"	O57°53'41,20888"	54,816	38,285	CHAPICUY
131	-21	416151,04 5	6497234,913	S31°39'25,44904"	O57°53'03,90534"	56,508	39,978	CHAPICUY
132	-21	416051,82 3	6496105,635	S31°40'02,09777"	O57°53'08,02048"	52,403	35,871	CHAPICUY
133	-21	415338,38 9	6496248,489	S31°39'57,26959"	O57°53'35,06670"	56,090	39,557	CHAPICUY
311	-22	270297,83 0	6269279,665	S33°41'29,81390"	O53°28'41,29935"	30,648	18,263	CHUY
312	-22	270892,11 3	6268202,781	S33°42'05,20961"	O53°28'19,23801"	31,586	19,279	CHUY
313	-22	273170,88 7	6269382,882	S33°41'28,68912"	O53°26'49,70853"	20,536	8,307	CHUY
314	-22	273715,38 1	6268151,877	S33°42'09,04133"	O53°26'29,70814"	17,917	5,768	CHUY
311A	-22	270307,11 1	6269312,097	S33°41'28,76907"	O53°28'40,90898"	30,195	17,809	CHUY
313A	-22	273120,73 5	6269182,028	S33°41'35,16621"	O53°26'51,83967"	19,841	7,617	CHUY
391	-21	549113,78 1	6154993,468	S34°44'45,58180"	O56°27'48,35570"	23,417	8,389	CIUDAD DEL PLATA
392	-21	553687,32 0	6153238,438	S34°45'41,72494"	O56°24'48,08359"	19,760	4,821	CIUDAD DEL PLATA
393	-21	553760,89 7	6155608,804	S34°44'24,76318"	O56°24'45,73417"	30,167	15,206	CIUDAD DEL PLATA
394	-21	558383,69 5	6151578,183	S34°46'34,69120"	O56°21'42,93563"	19,521	4,655	CIUDAD DEL PLATA
390A	-21	549245,93 7	6157057,676	S34°43'38,54899"	O56°27'43,59246"	30,341	15,290	CIUDAD DEL PLATA
194	-21	419266,94 4	6190650,855	S34°25'20,85925"	O57°52'42,91956"	37,036	21,118	COLONIA
195	-21	420972,81 4	6191591,555	S34°24'50,79701"	O57°51'35,78190"	55,358	39,427	COLONIA
196	-21	421583,90 4	6185078,331	S34°28'22,39788"	O57°51'13,99625"	21,578	5,684	COLONIA
197	-21	424357,30 8	6186475,300	S34°27'37,79518"	O57°49'24,84043"	23,943	8,036	COLONIA
198	-21	427988,22 6	6188142,130	S34°26'44,62115"	O57°47'02,03176"	37,074	21,151	COLONIA
199	-21	427090,00 9	6189922,707	S34°25'46,59181"	O57°47'36,68209"	37,638	21,704	COLONIA
217	-21	9 475644,03 1	6201454,182	S34°19'40,44753"	O57°15'53,14664"	65,252	49,194	COLONIA VALDENSE
218	-21	477196,74	6200356,016	S34°20'16,22782"	O57°14'52,48831"	54,202	38,153	COLONIA VALDENSE
219	-21	0 474828,02	6198991,228	S34°21'00,33946"	O57°16'25,33983"	46,183	30,145	COLONIA VALDENSE
220	-21	0 474563,49	6200750,865	S34°20'03,18797"	O57°16'35,50671"	46,638	30,585	COLONIA VALDENSE
170	-21	9 384858,50	6290124,670	S33°31'20,13822"	O58°14'23,59618"	21,771	4,691	DOLORES

	Siste			1 7		1) / Sistema Altitud	de Coordenada Altitud	as - Proyección UTM
			VADAS UTM		S GEODÉSICAS	Elipsoida	Ortométric	
Vértice	Huso	Este (m) 388031,49	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
171	-21	6	6291831,951	S33°30'25,92821"	O58°12'19,84674"	28,562	11,483	DOLORES
172	-21	389920,06 0	6291803,317	S33°30'27,56399"	O58°11'06,67334"	36,834	19,758	DOLORES
173	-21	388620,85 2	6286382,459	S33°33'23,05916"	O58°11'59,45125"	50,694	33,656	DOLORES
170-AUX	-21	384823,91 2	6290242,748	S33°31'16,29161"	O58°14'24,88231"	20,719	3,638	DOLORES
172-AUX	-21	389913,45 3	6291795,914	S33°30'27,80189"	O58°11'06,93267"	36,991	19,915	DOLORES
250	-21	542821,04 3	6310637,741	S33°20'33,33020"	O56°32'23,36491"	98,256	81,692	DURAZNO
251	-21	547478,09 7	6310332,163	S33°20'42,54856"	O56°29'23,14361"	107,275	90,755	DURAZNO
252	-21	545719,37 4	6302516,624	S33°24'56,59485"	O56°30'29,75596"	126,816	110,343	DURAZNO
253	-21	542011,64 3	6304038,734	S33°24'07,71756"	O56°32'53,57029"	97,660	81,146	DURAZNO
254	-21	543765,33 5	6306209,222	S33°22'56,98900"	O56°31'46,05999"	93,157	76,641	DURAZNO
221	-21	494009,13 0	6197822,412	S34°21'39,32551"	O57°03'54,53896"	81,790	65,790	ECILDA PAULLIER
222	-21	495089,56 5	6199249,383	S34°20'53,01763"	O57°03'12,21123"	75,409	59,400	ECILDA PAULLIER
223	-21	496353,23	6197827,894	S34°21'39,18682"	O57°02'22,76863"	67,989	51,994	ECILDA PAULLIER
224	-21	496013,25 8	6196613,173	S34°22'18,61962"	O57°02'36,09881"	57,936	41,948	ECILDA PAULLIER
361	-21	600942,55 5	6161523,230	S34°40'59,91932"	O55°53'52,99159"	45,302	30,883	EMPALME OLMOS
362	-21	599918,40 2	6160686,471	S34°41'27,44130"	O55°54'32,87767"	41,585	27,161	EMPALME OLMOS
363	-21	600832,92	6159495,670	S34°42'05,76964"	O55°53'56,42774"	45,937	31,530	EMPALME OLMOS
364	-21	603092,86	6159972,467	S34°41'49,48215"	O55°52'27,81820"	65,931	51,544	EMPALME OLMOS
433	-21	612301,39 8	6156317,950	S34°43'44,60419"	O55°46'24,18538"	34,876	20,634	FLORESTA
434	-21	618851,23 5	6155279,164	S34°44'15,65014"	O55°42'06,16817"	19,914	5,743	FLORESTA
435	-21	613469,18	6150599,316	S34°46'49,74616"	O55°45'35,50182"	25,233	11,116	FLORESTA
436	-21	616013,50 9	6153103,248	S34°45'27,44723"	O55°43'56,65854"	32,686	18,540	FLORESTA
437	-21	619800,00 6	6152603,590	S34°45'42,08832"	O55°41'27,49616"	20,899	6,788	FLORESTA
438	-21	620682,00	6153943,289	S34°44'58,23343"	O55°40'53,50092"	33,674	19,539	FLORESTA
439	-21	623581,30	6150912,568	S34°46'35,34625"	O55°38'57,89535"	21,532	7,476	FLORESTA
440	-21	4 624823,93	6152889,620	S34°45'30,63635"	O55°38'10,07393"	46,269	32,171	FLORESTA
478	-21	630874,31 8	6150182,267	S34°46'55,77054"	O55°34'10,63145"	30,351	16,346	FLORESTA
479	-21	631146,30	6151591,596	S34°46'09,90660"	O55°34'00,72391"	29,617	15,577	FLORESTA
235	-21	569250,46	6225571,960	S34°06'30,18569"	O56°14'56,99689"	67,370	51,551	FLORIDA
236	-21	569531,38 2	6229080,020	S34°04'36,23006"	O56°14'47,04237"	84,654	68,813	FLORIDA
237	-21	572889,71 8	6229232,483	S34°04'30,45747"	O56°12'36,06428"	81,028	65,226	FLORIDA
238	-21	574859,56 0	6227374,084	S34°05'30,28856"	O56°11'18,63821"	86,208	70,441	FLORIDA
239	-21	574530,75	6225187,380	S34°06'41,36302"	O56°11'30,79383"	81,893	66,137	FLORIDA
240	-21	572493,09	6226378,070	S34°06'03,22400"	O56°12'50,68195"	85,158	69,372	FLORIDA
160	-21	2 383711,54	6335816,635	S33°06'36,34851"	O58°14'46,88799"	38,906	21,684	FRAY BENTOS

	Siste			• •		4) / Sistema Altitud	de Coordenada Altitud	s - Proyección UTM
			NADAS UTM		S GEODÉSICAS	Elipsoida	Ortométric	
Vértice	Huso	Este (m) 384093,39	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
161	-21	7 379655,21	6333894,419	S33°07'38,90052"	O58°14'33,03612"	42,469	25,242	FRAY BENTOS
162	-21	4	6331509,388	S33°08'54,58849"	O58°17'25,40941"	44,112	26,904	FRAY BENTOS
163	-21	374962,17 3	6334474,922	S33°07'16,40300"	O58°20'25,05884"	34,134	16,951	FRAY BENTOS
164	-21	377867,31 6	6333350,150	S33°07'54,10954"	O58°18'33,52062"	43,248	26,051	FRAY BENTOS
492	-21	724785,36 2	6169064,070	S34°35'44,38222"	O54°32'56,07079"	55,340	42,445	GARZON
493	-21	724748,13 7	6169792,108	S34°35'20,79754"	O54°32'58,22469"	49,861	36,949	GARZON
494	-21	725805,33 3	6169491,977	S34°35'29,69722"	O54°32'16,47425"	41,583	28,698	GARZON
495	-21	725228,75 5	6169011,779	S34°35'45,72841"	O54°32'38,62962"	48,629	35,744	GARZON
494A	-21	725579,01 9	6169395,434	S34°35'33,00770"	O54°32'25,25817"	43,071	30,184	GARZON
151	-21	480121,43 0	6421526,046	S32°20'34,75659"	O57°12'40,48072"	110,636	94,032	GUICHON
152	-21	482221,74 1	6421754,330	S32°20'27,47012"	O57°11'20,11557"	95,974	79,386	GUICHON
153	-21	482678,03 4	6418008,328	S32°22'29,15304"	O57°11'02,90643"	154,009	137,400	GUICHON
154	-21	480342,92 q	6419055,035	S32°21'55,02045"	O57°12'32,19150"	95,398	78,776	GUICHON
154-AUX	-21	480096,07	6419330,399	S32°21'46,06186"	O57°12'41,61688"	91,575	74,953	GUICHON
304	-21	730196,61 6	6297354,551	S33°26'18,68195"	O54°31'25,56242"	102,612	88,404	JP VARELA
305	-21	728667,21 2	6293012,829	S33°28'40,70990"	O54°32'20,76061"	117,030	102,786	JP VARELA
306	-21	727282,76	6294729,679	S33°27'46,07470"	O54°33'15,92098"	116,645	102,392	JP VARELA
204	-21	456894,27	6191411,481	S34°25'04,28743"	O57°28'08,69942"	28,174	12,199	JUAN LACAZE
205	-21	460481,90	6189430,569	S34°26'09,11417"	O57°25'48,48438"	20,828	4,861	JUAN LACAZE
206	-21	459286,25 a	6189126,308	S34°26'18,82467"	O57°26'35,38559"	18,643	2,678	JUAN LACAZE
207	-21	458888,78 q	6192910,691	S34°24'15,90838"	O57°26'50,30580"	28,505	12,515	JUAN LACAZE
402	-21	566853,76 8	6151936,703	S34°46'21,17991"	O56°16'09,81180"	58,006	43,224	LAS PIEDRAS
403	-21	572142,65 9	6150653,421	S34°47'01,53838"	O56°12'41,35459"	51,076	36,367	LAS PIEDRAS
404	-21	572936,93 6	6157913,492	S34°43'05,66586"	O56°12'12,36805"	81,544	66,784	LAS PIEDRAS
405	-21	569242,90 3	6158294,282	S34°42'54,23036"	O56°14'37,70590"	55,873	41,073	LAS PIEDRAS
406	-21	569465,63	6165765,225	S34°38'51,65686"	O56°14'31,16104"	61,008	46,162	LAS PIEDRAS
407	-21	572171,16	6164456,258	S34°39'33,47447"	O56°12'44,48549"	65,649	50,846	LAS PIEDRAS
408	-21	7 575016,24	6157210,290	S34°43'27,95035"	O56°10'50,39882"	89,281	74,548	LAS PIEDRAS
409A	-21	5 574641,26	6158451,248	S34°42'47,76655"	O56°11'05,53690"	91,732	76,987	LAS PIEDRAS
308	-21	759591,81 o	6268773,405	S33°41'21,44460"	O54°11'58,43918"	63,413	49,263	LASCANO
310	-21	8 758211,92	6272580,229	S33°39'19,19512"	O54°12'55,95602"	51,414	37,201	LASCANO
309A	-21	9 757654,58	6268788,051	S33°41'22,66794"	O54°13'13,61161"	66,526	52,353	LASCANO
.UX307-G	-21	5 760038,94	6272656,497	S33°39'15,11893"	O54°11'45,18371"	37,437	23,242	LASCANO
388	-21	4 535079,89	6168587,150	S34°37'26,36427"	O56°37'02,32730"	43,525	27,983	LIBERTAD
389	-21	3 532662,75	6168036,058	S34°37'44,54256"	O56°38'37,17593"	59,237	43,656	LIBERTAD

	Siste			• •		4) / Sistema Altitud	de Coordenada Altitud	s - Proyección UTM
W. at			NADAS UTM		S GEODÉSICAS	Elipsoida	: :	0 : 4:4:
Vértice	Huso	Este (m) 536870,09	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
484	-21	1	6165302,221	S34°39'12,77976"	O56°35'51,50845"	55,602	40,162	LIBERTAD
387B	-21	535903,75 9	6167528,404	S34°38'00,63271"	O56°36'29,81122"	47,281	31,776	LIBERTAD
138	-21	413022,65 4	6450935,641	S32°04'28,18032"	O57°55'17,61154"	55,686	38,867	LORENZO G
139	-21	413716,10 1	6451251,917	S32°04'18,10118"	O57°54'51,06178"	53,824	37,012	LORENZO G
140	-21	413668,86 5	6449711,523	S32°05'08,11088"	O57°54'53,36148"	57,136	40,306	LORENZO G
141	-21	412755,22 8	6449692,717	S32°05'08,46862"	O57°55'28,21719"	51,292	34,456	LORENZO G
.40-AUX	-21	414165,33 3	6449075,641	S32°05'28,89686"	O57°54'34,62883"	55,506	38,671	LORENZO G
383	-21	557725,09 4	6170959,854	S34°36'05,64906"	O56°22'13,61492"	48,740	33,644	LOS CERRILLOS
384	-21	557661,75 2	6169784,435	S34°36'43,81942"	O56°22'15,81400"	49,118	34,039	LOS CERRILLOS
385	-21	559066,27 8	6169361,796	S34°36'57,25169"	O56°21'20,55994"	55,899	40,851	LOS CERRILLOS
386	-21	559657,38 2	6170727,224	S34°36'12,80292"	O56°20'57,69539"	58,284	43,227	LOS CERRILLOS
465	-21	668662,47 7	6138882,276	S34°52'42,43174"	O55°09'16,25013"	24,720	11,495	MALDONADO - PUNTA DEL ESTE OTRAS
466	-21	668744,95 6	6142500,124	S34°50'44,99544"	O55°09'15,62645"	26,601	13,287	MALDONADO - PUNTA DEL ESTE OTRAS
467	-21	678453,24 2	6134652,064	S34°54'53,65570"	O55°02'47,52758"	27,427	14,470	MALDONADO - PUNTA DEL ESTE OTRAS
468	-21	680387,68 6	6141961,221	S34°50'55,28478"	O55°01'37,00681"	157,125	144,019	MALDONADO - PUNTA DEL ESTE OTRAS
469	-21	686979,97 6	6128011,348	S34°58'23,56642"	O54°57'06,33500"	18,410	5,709	MALDONADO - PUNTA DEL ESTE OTRAS
470	-21	687823,91 8	6134117,489	S34°55'04,90783"	O54°56'38,02164"	37,621	24,797	MALDONADO - PUNTA DEL ESTE OTRAS
471	-21	688055,06 9	6141271,082	S34°51'12,67387"	O54°56'34,70543"	21,521	8,531	MALDONADO - PUNTA DEL ESTE OTRAS
472	-21	694590,08 8	6133762,989	S34°55'11,81602"	O54°52'11,23611"	26,538	13,814	MALDONADO - PUNTA DEL ESTE OTRAS
473	-21	695018,02 2	6138140,315	S34°52'49,51643"	O54°51'58,05707"	16,754	3,929	MALDONADO - PUNTA DEL ESTE OTRAS
474	-21	701179,38	6136213,243	S34°53'47,70324"	O54°47'53,84346"	17,143	4,477	MALDONADO - PUNTA DEL ESTE OTRAS
475	-21	696071,56 6	6135931,906	S34°54'00,42820"	O54°51'14,71936"	47,650	34,896	MALDONADO - PUNTA DEL ESTE OTRAS
476	-21	704707,46 5	6138362,006	S34°52'35,46123"	O54°45'36,82846"	19,834	7,197	MALDONADO - PUNTA DEL ESTE
477	-21	683013,82	6137311,340	S34°53'24,45429"	O54°59'49,99632"	28,655	15,694	OTRAS MALDONADO - PUNTA DEL ESTE
490	-21	701998,46	6139588,590	S34°51'57,62407"	O54°47'24,52680"	33,457	20,722	OTRAS MALDONADO - PUNTA DEL ESTE
468B	-21	9 679795,98	6142322,776	S34°50'43,93164"	O55°02'00,57289"	46,895	33,772	OTRAS MALDONADO - PUNTA DEL ESTE
74-AUX	-21	701243,74	6136260,674	S34°53'46,11867"	O54°47'51,35039"	17,922	5,256	OTRAS MALDONADO - PUNTA DEL ESTE
75-AUX	-21	8 696246,81	6136082,128	S34°53'55,43300"	O54°51'07,94559"	46,504	33,749	OTRAS MALDONADO - PUNTA DEL ESTE
290	-21	8 761544,52	6415682,091	S32°21'54,83823"	O54°13'13,50101"	117,995	104,597	OTRAS MELO
291	-21	7 766548,47	6418329,074	S32°20'24,71933"	O54°10'04,93104"	113,449	100,153	MELO
292	-21	3 770128,24	6415641,948	S32°21'48,78522"	O54°07'45,40208"	139,745	126,500	MELO
293	-21	4 769334,82	6412528,045	S32°23'30,47730"	O54°08'12,53705"	145,157	131,882	MELO
294	-21	2 766549,19	6414045,141	S32°22'43,67608"	O54°10'00,56799"	132,897	119,579	MELO
292A	-21	1 770013,92	6415611,465	S32°21'49,87349"	O54°07'49,73990"	142,366	129,118	MELO
	-71	1 400812,95	6321305,729	JJZ Z143,01349	004 01 40,10000	1→2,500	18,631	IVILLO

		COORDE	VADAS UTM	COORDENADA	S GEODÉSICAS	Altitud Elipsoida	Altitud Ortométric	
Vértice	Huso	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	l (m)	a (m)	Ciudades
166	-21	402383,76 6	6318901,561	S33°15'52,15545"	O58°02'53,08587"	23,949	6,667	MERCEDES
167	-21	406937,76 1	6319237,558	S33°15'42,69567"	O57°59'56,96339"	57,992	40,712	MERCEDES
168	-21	406928,47 7	6321994,160	S33°14'13,19390"	O57°59'56,30367"	38,803	21,519	MERCEDES
169	-21	404226,54 9	6319810,461	S33°15'23,24113"	O58°01'41,52248"	57,073	39,790	MERCEDES
350	-21	625202,98 3	6183685,260	S34°28'50,97901"	O55°38'11,54388"	93,800	79,206	MIGUES
351	-21	627379,22 9	6183109,152	S34°29'08,71717"	O55°36'45,93864"	70,558	55,957	MIGUES
352	-21	626343,35 3	6181766,485	6178328,813	O55°37'25,82511"	97,186	82,614	MIGUES
353	-21	625006,25 9	6182442,099	S34°29'31,41344"	O55°38'18,59861"	75,014	60,442	MIGUES
324	-21	663924,62 3	6194180,701	S34°22'50,85105"	O55°13'01,31221"	159,367	144,699	MINAS
326	-21	657407,91 9	6195938,554	S34°21'57,44936"	O55°17'17,54094"	172,270	157,525	MINAS
327	-21	660555,27 2	6197709,949	S34°20'58,22541"	O55°15'15,56553"	129,077	114,361	MINAS
329	-21	660047,00 6	6194581,738	S34°22'40,02270"	O55°15'33,35236"	139,498	124,785	MINAS
323B	-21	664219,37 4	6196354,585	S34°21'40,13951"	O55°12'51,27337"	183,523	168,851	MINAS
328A	-21	662276,04 7	6198327,556	S34°20'37,21815"	O55°14'08,65910"	133,838	119,137	MINAS
328B	-21	662339,67 4	6197088,518	S34°21'17,39006"	O55°14'05,32692"	171,197	156,502	MINAS
AUX01-MIN	-21	664903,89 5	6196789,734	S34°21'25,62712"	O55°12'24,78871"	158,744	144,077	MINAS
AUX02-MIN	-21	657818,73 6	6193297,683	S34°23'22,92436"	O55°16'59,71495"	160,345	145,611	MINAS
354	-21	632610,33 0	6182953,952	S34°29'11,37849"	O55°33'20,81632"	48,817	34,189	MONTES
355	-21	631382,68 3	6182975,307	S34°29'11,25155"	O55°34'08,94657"	54,421	39,798	MONTES
356	-21	631331,51 6	6181267,091	S34°30'06,71579"	O55°34'10,00517"	57,153	42,557	MONTES
357	-21	632531,83 4	6181925,219	S34°29'44,80255"	O55°33'23,31763"	51,119	36,507	MONTES
395	-21	558296,85 1	6147273,874	S34°48'54,43500"	O56°21'45,27714"	35,257	20,427	MONTEVIDEO
396	-21	564317,86 1	6149482,847	S34°47'41,42308"	O56°17'48,89789"	41,357	26,569	MONTEVIDEO
397	-21	562064,42 5	6145551,454	S34°49'49,54530"	O56°19'16,52548"	41,633	26,863	MONTEVIDEO
398	-21	560523,43 2	6141605,453	S34°51'57,97238"	O56°20'16,16479"	28,330	13,599	MONTEVIDEO
399	-21	562722,67 7	6138047,487	S34°53'52,98759"	O56°18'48,58832"	31,970	17,339	MONTEVIDEO
400	-21	563871,37 9	6143777,218	S34°50'46,73654"	O56°18'04,90383"	47,311	32,588	MONTEVIDEO
401	-21	568284,30 7	6148174,653	S34°48'22,95903"	O56°15'12,43482"	58,035	43,306	MONTEVIDEO
410	-21	575242,25 1	6149481,527	S34°47'38,77177"	O56°10'39,02611"	39,017	24,364	MONTEVIDEO
411	-21	573094,08 2	6145390,452	S34°49'52,13371"	O56°12'02,27234"	44,403	29,785	MONTEVIDEO
412	-21	571680,89 0	6140681,617	S34°52'25,34700"	O56°12'56,45511"	18,969	4,427	MONTEVIDEO
413	-21	576205,95 7	6136450,829	S34°54'41,49203"	O56°09'56,83880"	26,313	11,959	MONTEVIDEO
414	-21	, 577170,80 4	6138690,194	S34°53'28,54007"	O56°09'19,56358"	56,031	41,636	MONTEVIDEO
415	-21	579509,19 9	6143937,680	S34°50'37,55826"	O56°07'49,23681"	55,151	40,670	MONTEVIDEO
416	-21	583679,31	6138176,990	S34°53'43,34171"	O56°05'02,97913"	22,970	8,730	MONTEVIDEO

	Siste			• • • • • • • • • • • • • • • • • • • •		4) / Sistema Altitud	de Coordenada Altitud	as - Proyección UTM
			VADAS UTM		S GEODÉSICAS	Elipsoida	Ortométric	0 : 4.4.
Vértice	Huso	Este (m) 591149,02	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
417	-21	7 587979,42	6141544,319	S34°51'51,72697"	O56°00'10,02590"	19,181	4,987	MONTEVIDEO
418	-21	6 583184,31	6147367,808	S34°48'43,70787"	O56°02'17,04689"	29,356	14,946	MONTEVIDEO
419	-21	5 580235,65	6154699,329	S34°44'47,17894"	O56°05'28,37615"	75,046	60,436	MONTEVIDEO
420	-21	2	6156083,045	S34°44'03,11300"	O56°07'24,80867"	69,121	54,457	MONTEVIDEO
421	-21	581341,77 8	6153587,559	S34°45'23,80195"	O56°06'40,44836"	62,538	47,915	MONTEVIDEO
422	-21	586188,81	6158881,505	S34°42'30,52848"	O56°03'31,76288"	71,474	56,874	MONTEVIDEO
423	-21	588166,13 1	6156734,120	S34°43'39,62469"	O56°02'13,23246"	76,276	61,721	MONTEVIDEO
424	-21	594545,18 7	6161053,461	S34°41'17,36844"	O55°58'04,17943"	44,529	30,041	MONTEVIDEO
425	-21	597467,97 6	6158378,428	S34°42'43,20896"	O55°56'08,21326"	27,318	12,882	MONTEVIDEO
426	-21	594388,97 9	6153843,559	S34°45'11,44670"	O55°58'07,41292"	28,023	13,595	MONTEVIDEO
427	-21	591324,07 3	6149626,804	S34°47'29,32290"	O56°00'06,29993"	48,521	34,118	MONTEVIDEO
428	-21	591863,95 3	6147438,322	S34°48'40,18379"	O55°59'44,19638"	43,426	29,080	MONTEVIDEO
429	-21	595634,14 9	6144780,165	S34°50'05,21318"	O55°57'14,73076"	19,513	5,298	MONTEVIDEO
430	-21	598765,43 4	6151153,038	S34°46'37,28491"	O55°55'14,16419"	21,635	7,319	MONTEVIDEO
431	-21	605470,39	6149943,233	S34°47'14,13382"	O55°50'49,86322"	28,655	14,462	MONTEVIDEO
432	-21	610914,61	6152255,572	S34°45'57,00185"	O55°47'16,77839"	44,047	29,868	MONTEVIDEO
491	-21	605981,10 6	6154535,215	S34°44'44,89930"	O55°50'31,85285"	41,524	27,241	MONTEVIDEO
401-AUX		571286,46	6145536,418	S34°49'47,85737"	O56°13'13,47745"	56,289	41,641	MONTEVIDEO
212	-21	479572,96	6207749,133	S34°16'16,37948"	O57°13'18,85527"	40,637	24,524	NUEVA HELVECIA
213	-21	3 480526,34	6206086,717	S34°17'10,41807"	O57°12'41,70610"	47,709	31,614	NUEVA HELVECIA
214	-21	478544,85	6202260,296	S34°19'14,50695"	O57°13'59,55428"	52,245	36,182	NUEVA HELVECIA
215	-21	5 475929,88	6203472,183	S34°18'34,95496"	O57°15'41,75699"	49,007	32,931	NUEVA HELVECIA
216	-21	2 478112,40	6206784,415	S34°16'47,59326"	O57°14'16,06214"	42,093	25,987	NUEVA HELVECIA
		6 479368,46						
212-AUX	-21 21	3 369772,69	6207420,770	S34°16'27,02567"	O57°13'26,88105"	37,542	21,432	NUEVA HELVECIA
175	-21	5 371847,95	6253534,169	S33°51'01,62824"	O58°24'27,59866"	23,045	6,421	NUEVA PALMIRA
176	-21	9 369310,43	6254004,780	S33°50'47,26718"	O58°23'06,61717"	29,731	13,095	NUEVA PALMIRA
177	-21	4 371218,37	6246996,506	S33°54'33,62743"	O58°24'49,08088"	36,318	19,802	NUEVA PALMIRA
178	-21	4 373835,24	6247029,237	S33°54'33,41140"	O58°23'34,78738"	49,253	32,737	NUEVA PALMIRA
179	-21	0	6249832,225	S33°53'03,56864"	O58°21'51,46217"	41,236	24,673	NUEVA PALMIRA
185	-21	425337,51 5	6245948,779	S33°55'27,31502"	O57°48'27,95603"	114,973	98,400	OMBUES DE LA VALLE
186	-21	426357,13 7	6245220,154	S33°55'51,22877"	O57°47'48,46746"	119,110	102,541	OMBUES DE LA VALLE
187	-21	424743,04	6243209,021	S33°56'56,10922"	O57°48'51,95431"	110,494	93,941	OMBUES DE LA VALLE
188	-21	423651,68 5	6244070,174	S33°56'27,86857"	O57°49'34,19881"	116,853	100,295	OMBUES DE LA VALLE
185-AUX	-21	425420,88 1	6246117,413	S33°55'21,86154"	O57°48'24,65775"	113,746	97,172	OMBUES DE LA VALLE
456	-21	660051,08 7	6149225,183	S34°47'11,83697"	O55°15'02,41989"	61,556	47,884	PAN DE AZUCAR

Vértice	Huso	COORDENADAS UTM		COORDENADAS GEODÉSICAS		Altitud Elipsoida	Altitud Ortométric	
		Este (m) 661672,90	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
457	-21	2	6148367,429	S34°47'38,74813"	O55°13'58,03866"	36,515	22,901	PAN DE AZUCAR
458	-21	662673,31 4	6152156,031	S34°45'35,24109"	O55°13'21,32602"	54,720	41,023	PAN DE AZUCAR
459	-21	663334,83 8	6149954,861	S34°46'46,28463"	O55°12'53,77831"	44,807	31,187	PAN DE AZUCAR
263	-21	543041,68 6	6371046,897	S32°47'51,69599"	O56°32'25,06084"	94,752	78,167	PASO DE LOS TOROS
264	-21	544670,26 4	6372306,806	S32°47'10,54839"	O56°31'22,66278"	108,670	92,097	PASO DE LOS TOROS
265	-21	548440,93 5	6366846,186	S32°50'07,29582"	O56°28'56,67757"	97,462	80,914	PASO DE LOS TOROS
267	-21	545852,93 1	6369559,464	S32°48'39,58796"	O56°30'36,70778"	83,679	67,113	PASO DE LOS TOROS
66-AUX	-21	546396,56 6	6367204,834	S32°49'55,96777"	O56°30'15,37811"	80,543	63,976	PASO DE LOS TOROS
142	-21	396996,20 5	6431056,079	S32°15'08,85003"	O58°05'36,53029"	21,507	4,370	PAYSANDU
143	-21	402673,06 5	6429730,632	S32°15'53,71570"	O58°02'00,09460"	35,703	18,573	PAYSANDU
145	-21	395175,37 7	6420642,443	S32°20'46,38198"	O58°06'50,24066"	26,543	9,330	PAYSANDU
146	-21	398787,39 4	6425078,157	S32°18'23,54857"	O58°04'30,37554"	53,007	35,828	PAYSANDU
144-PP	-21	399402,98 7	6419053,162	S32°21'39,38692"	O58°04'09,13829"	62,143	44,941	PAYSANDU
147	-21	442148,16 9	6418435,625	S32°22'10,36177"	O57°36'53,82830"	114,865	98,019	PIEDRAS COLORADAS
148	-21	443279,35 0	6418298,269	S32°22'15,03140"	O57°36'10,57283"	99,526	82,683	PIEDRAS COLORADAS
149	-21	443209,08 1	6417565,068	S32°22'38,82909"	O57°36'13,42005"	107,654	90,805	PIEDRAS COLORADAS
150	-21	442135,71 6	6417468,298	S32°22'41,77313"	O57°36'54,51760"	122,099	105,245	PIEDRAS COLORADAS
445	-21	653490,21 q	6146041,296	S34°48'58,78733"	O55°19'18,37814"	20,470	6,773	PIRIAPOLIS
446	-21	654885,48 9	6146731,851	S34°48'35,61828"	O55°18'23,93781"	36,548	22,852	PIRIAPOLIS
447	-21	655112,17 5	6142079,637	S34°51'06,45571"	O55°18'11,92262"	20,486	6,917	PIRIAPOLIS
448	-21	657764,82 8	6142725,770	S34°50'44,01996"	O55°16'27,94472"	68,569	55,026	PIRIAPOLIS
449	-21	659039,17 0	6144046,519	S34°50'00,44880"	O55°15'38,68915"	56,928	43,374	PIRIAPOLIS
450	-21	658286,60 0	6140768,761	S34°51'47,23045"	O55°16'06,07719"	45,716	32,230	PIRIAPOLIS
451	-21	657078,07 6	6137910,493	S34°53'20,65291"	O55°16'51,72342"	20,387	6,949	PIRIAPOLIS
452	-21	658968,23 5	6136263,558	S34°54'13,03405"	O55°15'36,16151"	23,804	10,438	PIRIAPOLIS
453	-21	659549,46 4	6137679,414	S34°53'26,76363"	O55°15'14,24128"	28,861	15,473	PIRIAPOLIS
454	-21	662269,64 3	6137189,217	S34°53'41,11723"	O55°13'26,77744"	19,091	5,771	PIRIAPOLIS
455	-21	662058,71	6138094,737	S34°53'11,85642"	O55°13'35,71565"	40,161	26,815	PIRIAPOLIS
480	-21	409392,80 5	6416211,175	S32°23'14,75152"	O57°57'47,92633"	78,884	61,747	PORVENIR
481	-21	5 408426,20	6415987,285	S32°23'21,73742"	O57°58'24,99586"	76,092	58,946	PORVENIR
482	-21	409033,61 9	6415048,303	S32°23'52,40687"	O57°58'02,07476"	75,719	58,579	PORVENIR
483	-21	408268,32	6415224,469	S32°23'46,46073"	O57°58'31,30392"	72,207	55,061	PORVENIR
134	-21	9 413441,26	6466408,389	S31°56'05,82896"	O57°54'56,64698"	89,083	72,427	QUEBRACHO
135	-21	414286,11	6465576,254	S31°56'33,08319"	O57°54'24,73897"	67,198	50,537	QUEBRACHO
		8 416444,20	2 . 2 5 C . 5 1 E C T	312 20 00,00010	3.2.,10001	,=-0	-5,00.	4022.2.0010

	Siste					4) / Sistema Altitud	ae Cooraenaa Altitud	as - Proyección UTM
			VADAS UTM		S GEODÉSICAS	Elipsoida	Ortométric	
Vértice	Huso	Este (m) 415956,10	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	` '	a (m)	Ciudades
137	-21	6 273739,94	6467786,722	S31°55'21,74808"	O57°53'20,44681"	77,105	60,471	QUEBRACHO
295	-22	0	6390433,427	S32°36'01,83504"	O53°24'39,47549"	24,592	12,719	RIO BRANCO
296	-22	275594,51 2	6388701,585	S32°36'59,38764"	O53°23'29,88081"	27,564	15,709	RIO BRANCO
297	-22	278570,11 9	6391376,886	S32°35'34,73924"	O53°21'33,52107"	15,590	3,807	RIO BRANCO
298	-22	277675,17 0	6394204,031	S32°34'02,35909"	O53°22'05,41077"	21,296	9,521	RIO BRANCO
297A	-22	278523,88 1	6391404,097	S32°35'33,82301"	O53°21'35,27021"	16,172	4,388	RIO BRANCO
283	-21	639357,92 9	6575142,828	S30°56'56,22900"	O55°32'27,91443"	242,242	228,028	RIVERA
284	-21	642457,74 7	6579017,138	S30°54'49,08577"	O55°30'33,07507"	237,648	223,547	RIVERA
285	-21	637896,80 3	6583710,307	S30°52'18,62928"	O55°33'27,14172"	278,983	264,877	RIVERA
286	-21	632663,23 2	6584581,743	S30°51'52,48399"	O55°36'44,58325"	292,490	278,293	RIVERA
287	-21	636380,88 1	6580990,424	S30°53'47,58757"	O55°34'22,90330"	219,678	205,496	RIVERA
288	-21	635267,30 0	6578821,366	S30°54'58,48652"	O55°35'03,80121"	225,569	211,334	RIVERA
289	-21	639603,90 8	6579699,908	S30°54'28,14055"	O55°32'20,89710"	223,941	209,801	RIVERA
288-AUX	-21	635252,28 6	6578833,159	S30°54'58,10975"	O55°35'04,37234"	225,642	211,407	RIVERA
319	-21	744645,96 4	6184145,370	S34°27'18,94790"	O54°20'12,75123"	47,366	34,591	ROCHA
320	-21	748531,59 9	6181978,180	S34°28'25,88607"	O54°17'38,35928"	52,315	39,709	ROCHA
321	-21	744714,87 1	6178730,705	S34°30'14,48862"	O54°20'04,46648"	27,794	15,162	ROCHA
322	-21	742086,37 7	6179937,006	S34°29'37,60301"	O54°21'48,66821"	51,132	38,395	ROCHA
231	-21	542015,49 2	6195785,263	S34°22'42,45446"	O56°32'34,78223"	59,758	44,005	RODRIGUEZ
232	-21	542055,47 9	6196749,909	S34°22'11,13130"	O56°32'33,38675"	56,303	40,541	RODRIGUEZ
233	-21	543624,60 5	6195394,973	S34°22'54,88545"	O56°31'31,70392"	67,924	52,190	RODRIGUEZ
234	-21	543040,14 8	6194950,386	S34°23'09,40712"	O56°31'54,50966"	57,659	41,924	RODRIGUEZ
208	-21	466276,44 1	6204214,866	S34°18'09,87482"	O57°21'59,34274"	30,337	14,237	ROSARIO
209	-21	468425,20 g	6204653,532	S34°17'55,87659"	O57°20'35,22147"	61,747	45,647	ROSARIO
210	-21	466905,98 2	6199916,920	S34°20'29,48392"	O57°21'35,30944"	61,894	45,842	ROSARIO
211	-21	468711,17 8	6200458,417	S34°20'12,10580"	O57°20'24,58370"	47,101	31,046	ROSARIO
124	-21	407189,31 0	6530451,370	S31°21'24,21723"	O57°58'32,93366"	33,136	16,692	SALTO
125	-21	413871,92 6	6530136,469	S31°21'36,29888"	O57°54'20,11900"	68,732	52,271	SALTO
126	-21	414883,34 5	6526575,619	S31°23'32,21583"	O57°53'42,93530"	58,020	41,551	SALTO
127	-21	409239,21 3	6523045,969	S31°25'25,30685"	O57°57'17,78624"	56,770	40,302	SALTO
128	-21	405910,59 0	6525486,229	S31°24'05,09868"	O57°59'23,01812"	39,409	22,953	SALTO
129	-21	410025,28 9	6527385,055	S31°23'04,60670"	O57°56'46,60079"	59,339	42,880	SALTO
334	-21	584535,11	6188048,607	S34°26'44,23727"	O56°04'47,21605"	59,696	44,806	SAN ANTONIO
335	-21	583388,67	6187385,845	S34°27'06,08744"	O56°05'31,90536"	65,937	51,039	SAN ANTONIO
337	-21	0 583762,47	6186172,920	S34°27'45,35186"	O56°05'16,82894"	55,656	40,792	SAN ANTONIO

Sistema de Referencia - SIRGAS-ROU98 (época 1995.41 - ITRF1994) / Sistema de Coordenadas - Proyección UTM COORDENADAS UTM COORDENADAS GEODÉSICAS Altitud Altitud Altitud								
		COORDENADAS UTM				Elipsoida	Ortométric	
Vértice	Huso	Este (m) 583822,85	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
335B-AUX	-21	9	6187231,806	S34°27'10,96111"	O56°05'14,83650"	57,973	43,087	SAN ANTONIO
336B	-21	585022,40 9	6186675,761	S34°27'28,65775"	O56°04'27,63026"	63,747	48,898	SAN ANTONIO
342	-21	595569,55 0	6189977,661	S34°25'38,15277"	O55°57'35,63087"	89,477	74,741	SAN BAUTISTA
343	-21	596697,41 0	6189335,309	S34°25'58,62575"	O55°56'51,18705"	90,662	75,958	SAN BAUTISTA
344	-21	594526,53 5	6188051,333	S34°26'41,02808"	O55°58'15,72344"	86,085	71,380	SAN BAUTISTA
345-AUX	-21	595501,65 4	6187275,865	S34°27'05,87682"	O55°57'37,20440"	82,037	67,363	SAN BAUTISTA
460	-21	689076,93 2	6151842,056	S34°45'29,04124"	O54°56'03,05500"	25,820	12,610	SAN CARLOS
461	-21	691213,32 5	6151069,760	S34°45'52,66300"	O54°54'38,44216"	35,492	22,328	SAN CARLOS
462	-21	688930,49 3	6145808,170	S34°48'44,89500"	O54°56'03,93101"	19,140	6,060	SAN CARLOS
463	-21	692199,70 4	6147123,561	S34°48'00,01849"	O54°53'56,41839"	21,798	8,731	SAN CARLOS
464	-21	690247,47 9	6148630,261	S34°47'12,45676"	O54°55'14,42640"	37,361	24,237	SAN CARLOS
346	-21	604300,03 1	6177386,676	S34°32'23,80381"	O55°51'48,09118"	65,195	50,750	SAN JACINTO
347	-21	602705,57 9	6175981,744	S34°33'09,98427"	O55°52'50,02360"	67,009	52,565	SAN JACINTO
348	-21	602394,12 0	6177063,514	S34°32'34,98295"	O55°53'02,71142"	61,518	47,065	SAN JACINTO
349	-21	603977,06 3	6175900,813	S34°33'12,15096"	O55°52'00,10585"	60,808	46,372	SAN JACINTO
225	-21	524261,51 0	6198872,505	S34°21'04,27213"	O56°44'10,28748"	73,259	57,370	SAN JOSE
226	-21	524193,92 3	6201789,361	S34°19'29,57924"	O56°44'13,22875"	51,828	35,921	SAN JOSE
227	-21	526770,53 8	6202250,479	S34°19'14,38056"	O56°42'32,45185"	47,224	31,329	SAN JOSE
228	-21	529644,42 3	6200465,166	S34°20'12,06076"	O56°40'39,77477"	39,769	23,903	SAN JOSE
229	-21	526987,64 1	6197946,813	S34°21'34,08260"	O56°42'23,46997"	45,411	29,543	SAN JOSE
230	-21	526904,88 4	6200214,961	S34°20'20,45303"	O56°42'26,96554"	60,099	44,219	SAN JOSE
331	-21	594835,82 5	6205131,040	S34°17'26,50346"	O55°58'10,39969"	59,445	44,274	SAN RAMON
332	-21	597199,17 5	6204096,910	S34°17'59,28528"	O55°56'37,54833"	69,827	54,715	SAN RAMON
333	-21	594795,88 4	6202584,300	S34°18'49,18696"	O55°58'10,95234"	64,330	49,229	SAN RAMON
330-AUX	-21	596232,55 8	6206283,958	S34°16'48,61555"	O55°57'16,23656"	55,366	40,182	SAN RAMON
374	-21	555335,55 7	6188634,036	S34°26'32,35657"	O56°23'51,56175"	32,925	17,454	SANTA LUCIA
376	-21	556923,88 5	6185417,488	S34°28'16,46689"	O56°22'48,55147"	32,271	16,892	SANTA LUCIA
378	-21	555926,32 4	6186904,967	S34°27'28,37422"	O56°23'28,00515"	39,936	24,509	SANTA LUCIA
374-AUX	-21	555664,81 5	6188727,217	S34°26'29,26779"	O56°23'38,68158"	27,495	12,027	SANTA LUCIA
375-AUX	-21	554906,25 6	6187531,889	S34°27'08,21915"	O56°24'08,12910"	26,036	10,578	SANTA LUCIA
377-AUX	-21	557222,47	6187356,406	S34°27'13,46285"	O56°22'37,31491"	41,171	25,758	SANTA LUCIA
338	-21	587976,36	6182732,788	S34°29'35,75892"	O56°02'30,40398"	70,254	55,540	SANTA ROSA
339	-21	4 589281,57	6182795,790	S34°29'33,30953"	O56°01'39,25635"	67,051	52,360	SANTA ROSA
340	-21	587160,72	6182205,714	S34°29'53,11791"	O56°03'02,18779"	59,293	44,573	SANTA ROSA
341	-21	4 588057,25	6180919,990	S34°30'34,57906"	O56°02'26,55836"	64,366	49,682	SANTA ROSA

Sistema de Referencia - SIRGAS-ROU98 (época 1995.41 - ITRF1994) / Sistema de Coordenadas - Proyección UTM COORDENADAS UTM COORDENADAS GEODÉSICAS Altitud Altitud								is - Proyeccion UTM
						Elipsoida	Ortométric	a
Vértice	Huso	Este (m) 625839,68	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
259	-21	8 627910,14	6308934,996	S33°21'05,17374"	O55°38'51,25596"	143,275	127,606	SARANDI DEL YI
260	-21	9	6308748,665	S33°21'10,34290"	O55°37'31,07453"	136,462	120,822	SARANDI DEL YI
261	-21	628938,81 0	6311690,972	S33°19'34,38719"	O55°36'52,79773"	146,681	131,057	SARANDI DEL YI
262	-21	627213,41 3	6311524,647	S33°19'40,52569"	O55°37'59,43313"	139,174	123,525	SARANDI DEL YI
241	-21	561995,87 2	6270017,527	S33°42'28,83984"	O56°19'51,44286"	154,955	138,722	SARANDI GRANDE
242	-21	563436,69 7	6268611,846	S33°43'14,17182"	O56°18'55,10761"	159,563	143,344	SARANDI GRANDE
243	-21	562839,09 6	6266096,719	S33°44'35,95918"	O56°19'17,68396"	171,508	155,291	SARANDI GRANDE
244	-21	561148,80 6	6268120,379	S33°43'30,61240"	O56°20'23,87839"	157,049	140,815	SARANDI GRANDE
365	-21	586835,18 8	6166847,191	S34°38'11,76464"	O56°03'09,30134"	54,797	40,188	SAUCE
366	-21	584402,07 9	6166571,649	S34°38'21,44083"	O56°04'44,75869"	74,606	59,962	SAUCE
367	-21	585419,55 3	6163757,478	S34°39'52,48618"	O56°04'03,77518"	57,004	42,378	SAUCE
368	-21	586333,43 0	6163739,620	S34°39'52,78984"	O56°03'27,86569"	64,886	50,273	SAUCE
365B	-21	586838,22	6166845,193	S34°38'11,82858"	O56°03'09,18149"	54,926	40,317	SAUCE
358	-21	620082,26	6161374,291	S34°40'57,30918"	O55°41'20,89145"	30,557	16,277	SOCA
359	-21	618826,72	6160385,965	S34°41'29,91426"	O55°42'09,72116"	38,383	24,117	SOCA
360	-21	617350,73	6161325,902	S34°41'00,02099"	O55°43'08,18964"	26,041	11,756	SOCA
485	-21	4 619213,58	6161439,469	S34°40'55,55955"	O55°41'55,05501"	30,069	15,787	SOCA
441	-21	5 646497,44	6149582,831	S34°47'07,57000"	O55°23'55,75082"	17,645	3,772	SOLIS
442	-21	0 647791,66	6148778,028	S34°47'33,01391"	O55°23'04,33541"	28,261	14,423	SOLIS
443	-21	3 647829,57	6147802,768	S34°48'04,64220"	O55°23'02,22624"	20,267	6,457	SOLIS
444	-21	9 647997,26	6150069,413	,				SOLIS
		2 649443,04		S34°46'50,99978"	O55°22'57,06622"	23,092	9,217	
444A	-21	7 595629,79	6147591,503	S34°48'10,65022"	O55°21'58,61631"	21,277	7,489	SOLIS
268	-21	3 593279,90	6486573,663	S31°45'08,35551"	O55°59'25,06009"	183,315	168,068	TACUAREMBO
269	-21	2 592912,59	6488917,079	S31°43'52,95207"	O56°00'55,17463"	170,355	155,103	TACUAREMBO
270	-21	6	6492265,345	S31°42'04,32405"	O56°01'10,27592"	160,293	145,058	TACUAREMBO
271	-21	599278,04 6	6494696,105	S31°40'43,46319"	O55°57'09,37436"	164,059	148,877	TACUAREMBO
272	-21	601755,64	6492372,500	S31°41'58,13869"	O55°55'34,41918"	174,601	159,421	TACUAREMBO
273	-21	596725,85 5	6490247,144	S31°43'08,72827"	O55°58'44,71243"	146,199	130,983	TACUAREMBO
487	-21	615389,62 0	6199742,352	S34°20'13,91967"	O55°44'43,97003"	95,208	80,306	TALA
488	-21	614166,50 4	6197081,093	S34°21'40,78822"	O55°45'30,55612"	78,613	63,786	TALA
489	-21	611962,57 8	6197581,240	S34°21'25,42061"	O55°46'57,05392"	72,940	58,104	TALA
486-AUX	-21	613845,82 9	6200757,712	S34°19'41,57715"	O55°45'44,86128"	80,474	65,548	TALA
187-AUX	-21	615178,74 6	6199643,799	S34°20'17,20302"	O55°44'52,17379"	96,022	81,123	TALA
274	-21	571306,58 7	6474098,592	S31°51'59,89919"	O56°14'46,22992"	284,093	268,236	TAMBORES
275	-21	572741,89 6	6472839,617	S31°52'40,45891"	O56°13'51,26982"	292,022	276,188	TAMBORES

Sistema de Referencia - SIRGAS-ROU98 (época 1995.41 - ITRF1994) / Sistema de Coordenadas - Proyección UTM								
		COORDEI	VADAS UTM		COORDENADAS GEODÉSICAS		Ortométric	
Vértice	Huso	Este (m) 571722,48	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	I (m)	a (m)	Ciudades
276	-21	1	6471706,513	S31°53'17,49097"	O56°14'29,76674"	285,240	269,370	TAMBORES
277	-21	570893,30 2	6473371,183	S31°52'23,61579"	O56°15'01,76628"	291,617	275,742	TAMBORES
274A	-21	571376,00 7	6474017,301	S31°52'02,52356"	O56°14'43,56664"	283,964	268,108	TAMBORES
200	-21	441916,42 8	6209313,630	S34°15'20,46470"	O57°37'51,08491"	102,349	86,156	TARARIRAS
201	-21	444285,71 0	6209206,670	S34°15'24,40415"	O57°36'18,47478"	122,282	106,088	TARARIRAS
202	-21	444622,16 7	6207264,600	S34°16'27,51802"	O57°36'05,76861"	101,106	84,940	TARARIRAS
203	-21	443023,75 0	6207009,782	S34°16'35,47934"	O57°37'08,33845"	113,773	97,612	TARARIRAS
278	-21	616530,72 5	6548059,105	S31°11'44,70992"	O55°46'36,79262"	161,631	146,988	TRANQUERAS
279	-21	616033,00 9	6549256,039	S31°11'06,01751"	O55°46'56,09338"	158,781	144,145	TRANQUERAS
280	-21	617623,80 5	6550277,721	S31°10'32,26572"	O55°45'56,43294"	166,468	151,855	TRANQUERAS
281	-21	618855,69 8	6548962,159	S31°11'14,54000"	O55°45'09,34385"	169,647	155,032	TRANQUERAS
282	-21	619043,21 9	6547688,605	S31°11'55,82979"	O55°45'01,71678"	199,030	184,404	TRANQUERAS
278-AUX	-21	616761,11 9	6547957,529	S31°11'47,92579"	O55°46'28,04614"	162,132	147,490	TRANQUERAS
280-AUX	-21	618509,73 8	6549676,085	S31°10'51,48174"	O55°45'22,71558"	167,283	152,672	TRANQUERAS
282-AUX	-21	619566,18 7	6547928,064	S31°11'47,86110"	O55°44'42,06210"	205,766	191,146	TRANQUERAS
299	-21	744021,05 0	6325013,327	S33°11'10,48894"	O54°22'57,54638"	50,755	36,908	TREINTA Y TRES
300	-21	747912,58 6	6322364,248	S33°12'33,23403"	O54°20'24,82155"	57,972	44,203	TREINTA Y TRES
301	-21	743676,30 6	6315530,042	S33°16'18,38966"	O54°23'01,68541"	44,744	30,880	TREINTA Y TRES
302	-21	739688,51 0	6316489,923	S33°15'50,46822"	O54°25'36,59493"	58,714	44,774	TREINTA Y TRES
303	-21	744136,31 4	6320238,196	S33°13'45,29222"	O54°22'48,48319"	71,833	57,993	TREINTA Y TRES
245	-21	508328,25 2	6293344,260	S33°29'57,82196"	O56°54'37,22051"	144,181	127,532	TRINIDAD
246	-21	511045,15 2	6293450,551	S33°29'54,28200"	O56°52'51,92605"	130,368	113,736	TRINIDAD
247	-21	510478,92 6	6288927,127	S33°32'21,18073"	O56°53'13,68038"	156,143	139,532	TRINIDAD
248	-21	508191,36 9	6288848,495	S33°32'23,80597"	O56°54'42,37753"	130,267	113,642	TRINIDAD
249	-21	509484,06 6	6291329,083	S33°31'03,22140"	O56°53'52,34765"	157,506	140,876	TRINIDAD
255	-21	590482,30 0	6321699,263	S33°14'23,56073"	O56°01'43,62593"	173,728	157,691	VILLA DEL CARMEN
256	-21	591863,59 2	6320223,676	S33°15'11,04906"	O56°00'49,71945"	170,678	154,652	VILLA DEL CARMEN
257	-21	594507,60 4	6322050,420	S33°14'10,91824"	O55°59'08,23444"	169,251	153,261	VILLA DEL CARMEN
258	-21	593469,79 5	6322960,409	S33°13'41,69870"	O55°59'48,66728"	171,789	155,791	VILLA DEL CARMEN
155	-21	440938,97 4	6383895,955	S32°40'51,77023"	O57°37'47,91215"	87,354	70,302	YOUNG
156	-21	442585,66 4	6381732,207	S32°42'02,34692"	O57°36'45,16307"	97,177	80,117	YOUNG
157	-21	439338,59 7	6379367,297	S32°43'18,51589"	O57°38'50,42392"	89,043	71,936	YOUNG
158	-21	437361,26 6	6379650,489	S32°43'08,92132"	O57°40'06,31386"	99,878	82,760	YOUNG
159	-21	439198,48 6	6383214,275	S32°41'13,56587"	O57°38'54,90234"	99,277	82,209	YOUNG
156A	-21	442187,04	6381942,130	S32°41'55,45504"	O57°37'00,42569"	98,171	81,110	YOUNG

La Tabla 8 presenta las coordenadas de los vértices implantados en el Control de Calidad (PC's), utilizadas para el Apoyo Urbano de este trabajo.

Tabla 8 - Lista de Coordenadas de los vértices de Apoyo Complementario (PC's).

	Jisteili		IADAS UTM		AS GEODÉSICAS	Altitud Elipsoida	Altitud Ortométric	s - Proyección UTM
Vértice	Huso	Este (m)	Norte (m)	Latitud (° ' ")	Longitud (° ' ")	l (m)	a (m)	Ciudad
PC77	-21	555978,90 1	6179547,53 7	S34°31'27,21309	O56°23'24,20615"	32,122	16,842	AGUAS CORRIENTES
PC116	-21	705998,08 6	6213114,44 8	S34°12'09,53348	O54°45'51,15925"	113,703	99,593	AIGUA
PC4	-21	551905,59 9	6634166,68 3	S30°25'24,44549	O56°27'34,27533"	119,644	105,629	ARTIGAS
PC5	-21	551188,86 6	6637746,56 6	S30°23'28,26287	O56°28'01,77334"	115,653	101,665	ARTIGAS
PC3	-21	425647,36 9	6593541,39 9	S30°47'19,82407	O57°46'37,63126"	60,356	44,974	BELEN
PC1	-21	443411,51 8	6653475,34 0	S30°14'56,44021	O57°35'17,50606"	74,268	59,321	BELLA UNION
PC2	-21	441157,38 3	6652122,85 5	S30°15'39,99008 "	O57°36'42,12269"	55,154	40,173	BELLA UNION
PC78	-21	566157,38 5	6180566,91 6	S34°30'51,94630 "	O56°16'45,26203"	36,389	21,287	CANELONES
PC79	-21	565924,24 3	6178256,12 1	S34°32'07,01496 "	O56°16'53,76131"	46,364	31,302	CANELONES
PC60	-21	466413,18 9	6252349,77 3	S33°52'07,09471 "	O57°21'47,30401"	184,528	167,914	CARDONA
PC58	-21	379996,46 0	6237548,02 1	S33°59'44,90535 "	O58°17'57,72244"	20,420	4,037	CARMELO
PC46	-22	237026,26 8	6212391,14 9	S34°11'46,82792 "	O53°51'13,64187"	61,929	50,309	CASTILOS
PC161	-21	415453,92 1	6496648,09 9	S31°39'44,32240 "	O57°53'30,55577"	66,507	49,975	CHAPICUY
PC45	-22	273084,41 5	6268737,74 1	S33°41'49,55094 "	O53°26'53,65818"	20,358	8,150	CHUY
PC72	-21	558123,96 7	6153559,68 0	S34°45'30,42122 "	O56°21'53,64669"	18,379	3,495	CIUDAD DEL PLATA
PC62	-21	421015,56 5	6188237,51 1	S34°26'39,68833 "	O57°51'35,22207"	20,880	4,973	COLONIA
PC63	-21	423019,12 6	6186215,78 9	S34°27'45,86298 "	O57°50'17,37019"	43,438	27,536	COLONIA
PC67	-21	475975,10 0	6199972,23 4	S34°20'28,58828 "	O57°15'40,33986"	56,769	40,723	COLONIA VALDENSE
PC29	-21	386122,95 3	6290509,80 4	S33°31'08,12350 "	O58°13'34,41184"	22,093	5,017	DOLORES
PC30	-21	387327,74 3	6288671,61 7	S33°32'08,25696 "	O58°12'48,55122"	35,032	17,972	DOLORES
PC33	-21	545254,77 8	6308830,47 6	S33°21'31,65397	O56°30'48,88656"	95,475	78,949	DURAZNO
PC119	-21	494750,22 1	6197678,24 7	S34°21'44,02050 "	O57°03'25,52889"	85,135	69,131	ELCIDA PAULLIER
PC88-AUX	-21	601172,70 8	6160281,50 1	S34°41'40,14197	O55°53'43,41274"	50,781	36,372	EMPALME OLMOS
PC103	-21	628981,59 2	6151601,04 6	S34°46'10,59394	O55°35'25,86558"	34,078	20,027	FLORESTA
PC104	-21	623423,38 6	6151764,22 3	S34°46'07,77470	O55°39'04,55666"	34,618	20,541	FLORESTA
PC105	-21	621244,47 0	6153008,53 3	S34°45'28,33128	O55°40'30,89947"	26,241	12,128	FLORESTA
PC106	-21	616747,42 2	6151911,50 4	S34°46'05,82501	O55°43'27,20158"	25,207	11,090	FLORESTA
C479-AUX	-21	631148,52	6151597,47 9	S34°46'09,71464	O55°34'00,63992"	29,791	15,751	FLORESTA
PC54	-21	571868,68 7	6228796,31 6	S34°04'44,87178	O56°13'15,76892"	93,204	77,393	FLORIDA
PC55	-21	570794,35 7	6226561,88 8	S34°05'57,67557	O56°13'57,03016"	87,712	71,905	FLORIDA

	Sistem		ncia - SIRGA IADAS UTM		ROU98 (época 1995.41 - ITRF1994) COORDENADAS GEODÉSICAS		Altitud	s - Proyección UTM
Vértice	Huso	Este (m)	Norte (m)	Latitud (°'")	Longitud (° ' ")	Elipsoida I (m)	Ortométric a (m)	Ciudad
PC25	-21	377859,63 0	6335386,76 6	S33°06'47,98929	O58°18'32,83589"	22,512	5,317	FRAY BENTOS
PC26	-21	381022,72	6333131,14	S33°08'02,48271	O58°16'31,87204"	40,737	23,524	FRAY BENTOS
PC118-AUX	-21	725091,97	6169546,72	S34°35'28,48531	O54°32'44,50532"	51,067	38,167	GARZON
PC15	-21	1 481151,09	8 6419027,13	" S32°21'55,97674	O57°12'01.26859"	124,902	108,286	GUICHON
PC22	-21	6 481303,36	5 6420073,66	" S32°21'21,99842	O57°11'55,36759"	106,238	89,631	GUICHON
PC22-AUX	-21	5 481267,84	3 6420205,40	" S32°21'17,71770	O57°11'56,71745"	104,952	88,346	GUICHON
P77	-21	1 730051,99	6 6295213,18	" S33°27'28,26089	O54°31'29,18431"	79,578	65,357	JP VARELA
PC50	-21	1 728832,58	8 6295617,24	" S33°27'16,09317	O54°32'16,74943"	90,053	75,821	JP VARELA
PC65	-21	0 460002,86	6 6189753,85	" S34°25'58,55226	O57°26'07,20012"	20,158	4,189	JUAN LACAZE
PC80	-21	6 571798,74	7 6162947,45	" S34°40'22,54677	O56°12'58,65500"	65,997	51,198	LAS PIEDRAS
PC81	-21	7 571363,80	6 6156069,19	" S34°44'05,93416	O56°13'13,65129"	76,529	61,764	LAS PIEDRAS
PC43	-21	0 759456,40	1 6271391,03	" S33°39'56,67132	O54°12'06,44509"	42,734	28,546	LASCANO
PC70	-21	4 534616,95	9 6166751,61	" S34°38'26,00981	O56°37'20,23763"	51,834	36,317	LIBERTAD
PC71	-21	4 535199,58	5 6168031,25	" S34°37'44,39625	O56°36'57,54359"	51,265	35,735	LIBERTAD
PC17	-21	7 413303,75	0 6450331,31	" S32°04'47,88302	O57°55'07,08690"	60,668	43,843	LORENZO G
PC94	-21	3 558541,34	5 6170306,97	" S34°36'26,67691	O56°21'41,40689"	58,310	43,239	LOS CERRILLOS
PC94-AUX	-21	9 558352,12	4 6170205,11	" S34°36'30,02227	O56°21'48,81085"	56,989	41,916	LOS CERRILLOS
PC100	-21	9 673559,45	8 6140282,83	" S34°51'54,01988	O55°06'04,49205"	38,698	25,528	MALDONADO - PUNTA DEL ESTE
PC100	-21	5 684442,44	1 6138460,78	" S34°52'46,23175	O54°58'54,65769"	51,159	38,189	OTRAS MALDONADO - PUNTA DEL ESTE
PC101	-21	0 689207,59	9 6130455,43	" S34°57'02,78569	O54°55'40,53546"	17,893	5,169	OTRAS MALDONADO - PUNTA DEL ESTE
		3 763865,43	8 6415315,35	" S32°22'04,76877	,			OTRAS
PC37	-21	4 766642,13	9 6416288,12	" S32°21'30,84094	O54°11'44,42838"	113,485	100,126	MELO
PC38	-21	0 405101,01	7 6320844,65	II	O54°09'59,28733"	117,739	104,434	MELO
PC27	-21	4 402542,78	9 6320324,05	" S33°15'06,02372	O58°01'07,34052"	25,803	8,518	MERCEDES
PC28	-21	5 626336,28	4 6182611,79	S34°29'25,32172	O58°02'46,38974"	32,904	15,619	MERCEDES
P95	-21	5 661483,68	4 6196609,90	S34°21'33,40332	O55°37'26,55297"	96,852	82,267	MIGUES
PC51	-21	3 631375,53	4 6182087,36	S34°29'40,07340	O55°14'38,49617"	143,118	128,416	MINAS
PC90	-21	7 560003,07	2 6146823,02	S34°49'08,71346	O55°34'08,73436"	53,912	39,303	MONTES
P92	-21	2 576705,71	1 6133818,47	S34°56'06,80200	O56°20'38,00348"	38,815	24,008	MONTEVIDEO
P93	-21	1 607279,70	0 6151563,32	п	O56°09'36,27557"	22,445	8,175	MONTEVIDEO
P94	-21	1 601235,16	2 6149872,18	S34°46'20,87034 " S34°47'17 98634	O55°49'39,42612"	37,172	22,965	MONTEVIDEO
PC108	-21	9	8	S34°47'17,98634 "	O55°53'36,45540"	21,096	6,844	MONTEVIDEO
PC109	-21	589242,57 6	6143582,15 6	S34°50'46,19046	O56°01'25,88460"	25,939	11,649	MONTEVIDEO
PC110	-21	571833,16 7	6136584,61 8	S34°54'38,29809	O56°12'49,19041"	19,280	4,843	MONTEVIDEO
PC112	-21	575921,49 9	6141764,37	п	O56°10'09,78406"	44,177	29,682	MONTEVIDEO
PC113	-21	569732,07 3	6142903,44 4	S34°51'13,71353	O56°14'13,87986"	35,530	20,908	MONTEVIDEO

		COORDENADAS UTM			AS GEODÉSICAS	Altitud Elipsoida	Altitud Ortométric	
/értice	Huso		Norte (m)	Latitud (° ' ")	Longitud (° ' ")	l (m)	a (m)	Ciudad
PC114	-21	578727,21 4	6146934,78 5	S34°49'00,49124 "	O56°08'21,03793"	61,798	47,241	MONTEVIDEO
PC114A	-21	578703,20 4	6146912,29 5	S34°49'01,22794 "	O56°08'21,97536"	62,322	47,765	MONTEVIDEO
PC115	-21	588777,23 5	6151746,52 4	S34°46'21,32876 "	O56°01'47,31356"	29,365	14,881	MONTEVIDEO
C117-AUX	-21	583635,22 0	6156519,53 0	S34°43'47,96245 "	O56°05'11,29454"	72,388	57,767	MONTEVIDEO
PC122	-21	596229,36 9	6157824,57 1	S34°43'01,60916	O55°56'56,67222"	25,461	11,014	MONTEVIDEO
PC73	-21	566691,88 9	6144828,50 7	S34°50'11,95864 "	O56°16'14,14805"	33,105	18,403	MONTEVIDEO
PC68	-21	478566,45 8	6206702,12 9	S34°16'50,29888 "	O57°13'58,31086"	59,585	43,481	NUEVA HELVECIA
PC69	-21	478455,76 8	6203738,31 2	S34°18'26,51475 "	O57°14'02,90705"	70,499	54,423	NUEVA HELVECIA
PC56	-21	369436,22 7	6249552,86 7	S33°53'10,70733	O58°24'42,81578"	30,769	14,214	NUEVA PALMIRA
PC57	-21	370055,04 5	6252383,14 7	S33°51'39,11468	O58°24'17,22611"	25,841	9,238	NUEVA PALMIRA
PC59	-21	425088,24 6	6244295,99 5	S33°56'20,90922 "	O57°48'38,17208"	124,134	107,572	OMBUES DE LA VALLE
PC96	-21	662747,04 6	6150664,30 3	S34°46'23,60288	O55°13'17,38858"	50,998	37,345	PAN DE AZUCAR
PC35	-21	544357,52 5	6369612,88 9	S32°48'38,07439	O56°31'34,22168"	86,236	69,658	PASO DE LOS TOROS
PC18	-21	397742,85 1	6422088,22 5	S32°20'00,29281 "	O58°05'11,47196"	27,639	10,440	PAYSANDU
PC19	-21	398690,76 8	6428479,37 0	S32°16'33,07533	O58°04'32,76546"	31,994	14,839	PAYSANDU
PC21	-21	442748,88 0	6417959,12 3	S32°22'25,94758 "	O57°36'30,94556"	106,579	89,731	PIEDRAS COLORADAS
PC98	-21	654709,38 0	6143995,55 5	S34°50'04,50622 "	O55°18'29,05066"	30,267	16,643	PIRIAPOLIS
PC99	-21	656537,01 1	6141322,42 1	S34°51'30,24040 "	O55°17'15,32761"	17,200	3,671	PIRIAPOLIS
PC20	-21	408895,34 2	6415644,06 1	S32°23'33,02087	O57°58'07,16062"	77,920	60,779	PORVENIR
PC166	-21	415160,57 8	6466722,91 6	S31°55'56,08211 "	O57°53'51,07345"	99,155	82,508	QUEBRACHO
PC39	-22	275124,04 5	6389763,52 5	S32°36'24,58696 "	O53°23'46,99960"	25,494	13,639	RIO BRANCO
PC40	-22	276948,58 2	6393702,97 1	S32°34'18,09158	O53°22'33,68122"	15,164	3,372	RIO BRANCO
PC8	-21	639073,31 3	6581543,43 0	S30°53'28,50002	O55°32'41,78565"	243,364	229,245	RIVERA
PC9	-21	638724,70 7	6578794,45 7	S30°54'57,91663	O55°32'53,56502"	207,944	193,774	RIVERA
PC47	-21	744844,92 9	6182727,17 5	S34°28'04,77070 "	O54°20'03,49879"	37,561	24,829	ROCHA
PC49	-21	743385,46 2	6181195,03 2	S34°28'55,70274	O54°20'59,07529"	26,095	13,363	ROCHA
PC74	-21	542274,68 9	6195611,73 7	S34°22'48,04998 "	O56°32'24,60222"	63,662	47,913	RODRIGUEZ
PC66	-21	467384,39 4	6201115,16 6	S34°19'50,63664	O57°21'16,42087"	60,443	44,379	ROSARIO
PC6	-21	408336,41 5	6526106,36 6	S31°23'45,65848 "	O57°57'50,96126"	50,028	33,570	SALTO
PC7	-21	412974,66 4	6527139,38 1	S31°23'13,39603	O57°54'55,02196"	68,832	52,366	SALTO
PC82	-21	584306,66 0	6187150,38 6	S34°27'13,46220 "	O56°04'55,84873"	63,182	48,308	SAN ANTONIO
PC84	-21	595623,87 9	6188378,33 0	S34°26'30,04967	O55°57'32,85895"	92,709	78,012	SAN BAUTISTA
PC95	-21	689925,95 1	6147302,11 7	S34°47'55,76101	O54°55'25,98971"	33,947	20,848	SAN CARLOS
C85-AUX	-21	603391,81 8	6176981,58 9	S34°32'37,28269	O55°52'23,53895"	73,211	58,764	SAN JACINTO
PC75	-21	525037,63		S34°20'47,88279	O56°43'39,95927"	63,902	48,015	SAN JOSE

		COORDENADAS UTM C		COORDENADA	COORDENADAS GEODÉSICAS		Altitud Ortométric	
Vértice	Huso	Este (m)	110110 (111)	Latitud (° ' ")	Longitud (° ' ")	Elipsoida I (m)	a (m)	Ciudad
PC91	-21	595692,40 5	6204576,79 4	S34°17'44,21189 "	O55°57'36,67683"	66,283	51,139	SAN RAMON
PC76	-21	555679,25 4	6188097,16 3	S34°26'49,71901 "	O56°23'37,96807"	28,146	12,691	SANTA LUCIA
PC83-AUX	-21	588551,24 4	6182014,75 5	S34°29'58,88955 "	O56°02'07,59705"	73,489	58,798	SANTA ROSA
PC36	-21	626994,95 5	6309507,23 5	S33°20'46,10854 "	O55°38'06,85947"	149,155	133,502	SARANDI DEL YI
PC52	-21	562081,53 2	6268175,96 7	S33°43'28,61243 "	O56°19'47,65069"	164,408	148,180	SARANDI GRANDE
PC53	-21	561668,43 4	6267278,16 3	S33°43'57,84853 "	O56°20'03,47675"	152,342	136,114	SARANDI GRANDE
PC86	-21	585325,01 2	6166022,59 1	S34°38'38,98826 "	O56°04'08,31169"	68,848	54,218	SAUCE
PC87	-21	586018,75 5	6164463,25 6	S34°39'29,39582 "	O56°03'40,49310"	54,077	39,459	SAUCE
PC89-AUX	-21	618714,85 8	6161077,81 8	S34°41'07,50616 "	O55°42'14,46697"	22,421	8,144	SOCA
PC97	-21	647394,80 1	6148867,41 1	S34°47'30,32032 "	O55°23'20,00302"	23,628	9,784	SOLIS
PC12	-21	595399,72 9	6491269,95 5	S31°42'35,91324 "	O55°59'35,45350"	147,303	132,083	TACUAREMBO
PC13	-21	597799,06 8	6492810,10 7	S31°41'45,16836 "	O55°58'04,86108"	162,680	147,483	TACUAREMBO
PC92	-21	613945,37 3	6199402,59 8	S34°20'25,52306 "	O55°45'40,32000"	94,695	79,806	TALA
PC93	-21	613176,83 0	6198301,04 8	S34°21'01,58129 "	O55°46'09,87128"	89,047	74,189	TALA
PC14	-21	571533,06 0	6472938,36 0	S31°52'37,52813	O56°14'37,30378"	286,664	270,801	TAMBORES
PC61	-21	443020,62 0	6208857,76 3	S34°15'35,48442 "	O57°37'08,02130"	106,239	90,051	TARARIRAS
PC10	-21	617319,52 5	6548876,54 9	S31°11'17,87907	O55°46'07,33676"	167,840	153,212	TRANQUERAS
PC11	-21	617285,73 6	6547291,80 8	S31°12'09,35592 "	O55°46'07,94676"	168,752	154,108	TRANQUERAS
PC41	-21	741712,46 0	6318100,28 9	S33°14'56,60495	O54°24'19,98853"	49,381	35,488	TREINTA Y TRES
PC42	-21	743682,61 5	6322398,38 3	S33°12'35,58813	O54°23'08,08047"	59,040	45,191	TREINTA Y TRES
PC31	-21	509505,24 0	6292767,17 1	S33°30'16,52510	O56°53'51,58178"	149,081	132,443	TRINIDAD
PC32	-21	509814,56 4	6290108,10 6	S33°31'42,85647	O56°53'39,48757"	149,058	132,436	TRINIDAD
PC34	-21	592302,82 2	6321770,92 5	S33°14'20,67929	O56°00'33,31347"	173,281	157,265	VILLA DEL CARMEN
PC23	-21	441125,61 5	6381747,36 7	S32°42'01,57729	O57°37'41,23412"	104,676	87,606	YOUNG
PC24	-21	439520,62 8	6380797,80 5	S32°42'32,09937	O57°38'43,09672"	95,741	78,651	YOUNG

2.7 Control de Calidad

El Control de Calidad de Apoyo de campo (Levantamiento, Procesamiento y Ajuste) corresponde a los procesos de TOPOCART cuyas actividades buscan garantizar la calidad prevista para esa etapa. Las actividades de control de calidad realizadas para los productos, están descritas a continuación:

2.7.1 Verificación de los Equipamientos

• Controlar el tipo de equipamiento utilizado: tipo, marca, modelo, modelo de antena y

código;

Control del perfecto funcionamiento de los equipamientos;

2.7.2 Ejecución de los Trabajos de Campo

- Evaluación de la localización de las Estaciones Oficiales de Referencia existentes:
- Evaluación de la localización de los vértices a ser implantados en el apoyo Terrestre;

2.7.3 Datos obtenidos en la colecta de los Puntos

- Verificación de los archivos recibidos (fotos de campo, croquis, archivo GNSS);
- Control de la conversión de los archivos para RINEX II;
- Control de los archivos organizados en los directorios;
- Verificación de los cuadernos de campo;

2.7.4 Procesamiento y Ajuste

- Validación de los vectores procesados a través de un informe de procesamiento y ajuste;
- Verificación de los resultados obtenidos para cumplimiento de las Normas Técnicas;
- Validación del ajuste a través del informe de ajuste;
- Verificación a través de test condicionales, de las precisiones de todas las coordenadas (desvíos E, N, h);

2.7.5 Datos Técnicos

- Análisis de los procedimientos metodológicos seguidos, en cumplimiento de las Normas Técnicas;
- Validación de los productos generados;

2.7.6 Monografías

- Verificación de los itinerarios utilizando Google Earth;
- Verificación de la coherencia de los textos generados;
- Verificación de las fotos de campo y de localización;
- Verificación del itinerario.

2.7.7 Informe Técnico de Apoyo Terrestre

 Análisis de los procedimientos metodológicos realizados, en cumplimiento de las Normas Técnicas y el Plan de Trabajo.

2.8 Registros Control de Calidad y Entrega de Insumos

Una síntesis de los registros de control de calidad y de los insumos entregados en el Apoyo de Campo pueden ser observados a continuación:

02 Apovo

01 Informe REGNA ROU

Fueron entregados los informes de las estaciones geodésicas oficiales de la red REGNA-ROU proporcionados por el Instituto Geográfico Militar de Uruguay.

02_Monografias_Apoyo_Complementario

Fueron entregadas las monografías de los puntos de Apoyo Complementario y las monografías de las bases virtuales.

03_Hojas_Coordenadas

Se entregó una planilla con información referente al Sistema de Referencia SIRGAS-ROU98, de las estaciones REGNA-ROU con sus respectivas coordenadas UTM y geográficas, así como la altitud geométrica, la altitud ortométrica y la ondulación geoidal.

04 Distribución Espacial Apoyos

01 Archivo KMZ

Se entregó el archivo con puntos de Apoyo Complementario en el formato KMZ.

02_Mapa_Ubicacion_Apoyo_Complementario

Se entregó el archivo con puntos de Apoyo Complementario en el formato SHP.

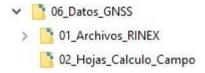
03_Archivos_ASCII

Se entregó el archivo con puntos de Apoyo Complementario en el formato ASCII.

04 Bases Apoyo Fotogrametrico

Se entregó el archivo con las bases de apoyo fotogramétrico en el formato SHP.

05_Tratamiento_Ajuste_Datos_GNSS


GPS

Se entregó un conjunto de archivos para cada estación procesada. Uno de ellos contiene la lista puntos con coordenadas geográficas, otro con la lista de puntos con coordenadas UTM y el otro con el informe de procesamiento de la línea de base.

RTK

Se entregó un conjunto de archivos para cada estación procesada, una con una lista de puntos con coordenadas geográficas, otro con una lista de puntos con coordenadas UTM y otro con la lista de vectores.

6_Datos_GNSS

01_Archivos_RINEX

GPS

Fueron entregados los archivos RINEX de los puntos de apoyo suplementarios, de las bases virtuales y de las estaciones REGNA-ROU.

RTK

Fueron entregados los archivos JOB de levantamiento de puntos con la metodología RTK

02 Hojas Calculo Campo

Fue entregada la planilla de campo para cada Bloque en formato PDF.

07_Registro_Fotográfico_Vértices

Fueron entregados los registros fotográficos de puntos de Apoyo Complementario y de

base virtual.

3 COBERTURA AEROFOTOGRAMÉTRICA

3.1 Planificación de la cobertura aerofotogramétrica

La etapa inicial de la cobertura aérea consistió en la emisión de la Licencia de Vuelo. También fueron definidas las coordenadas de límites de la cobertura aérea considerando el margen necesario para la realización de las maniobras de la aeronave y la localización de las bases de operaciones.

Para la ejecución del vuelo fue realizada una meticulosa planificación con el objetivo de definir la mejor geometría de recubrimiento aerofotogramétrico, para permitir la completa cobertura estereoscópica del área de interés, de acuerdo con las especificaciones técnicas.

TOPOCART utilizó el software X-Track desarrollado por Track'air con el fin de obtener un plan de vuelo gráfico y analítico. El X-Track fue utilizado también como sistema de gerenciamiento de vuelo a bordo del avión.

Los planes de vuelo de las coberturas nacional y urbana son presentados en las figuras 11 y 12.

Figura 11 - Plan de vuelo de la cobertura nacional elaborado en sistema X-Track.

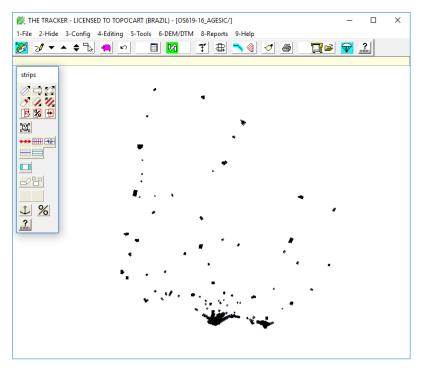


Figura 12 - Plan de vuelo de la cobertura urbana elaborado en el sistema X-Track.

El plan de vuelo fue elaborado a partir del límite del área de mapeamiento y de un Modelo Digital de Terreno, en este caso proveniente del sensor orbital SRTM. X-Track permite la determinación de diferentes altitudes de vuelo para cada faja a ser cubierta, a partir de esto, son calculadas las superposiciones entre las imágenes y determinadas las tolerancias que, posteriormente, fueron contrastadas y ajustadas.

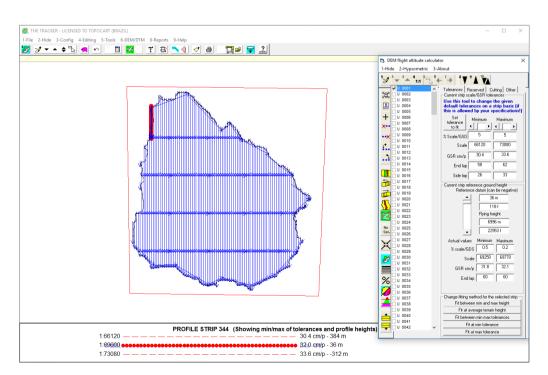


Figura 13 - Elaboración del plan de vuelo de la cobertura nacional en el software X-Track ilustrando la herramienta de análisis de la cobertura aérea en relación al MDT.

Al final de la planificación fueron obtenidas todas las informaciones gráficas y analíticas

necesarias para la ejecución de la misión aerofotogramétrica. El plan de vuelo fue grabado en el sistema X-Track a bordo de la aeronave, de forma de permitir el control de vuelo, que debe ser coherente con la planificación previa.

Un resumen de las informaciones de las Coberturas aérea Nacional y Urbana es presento en la Tabla 09.

Tabla 09 - Resumen de las informaciones Cobertura Aérea Nacional y Urbana.

Información Cobertura Aérea	Planeada		Ejecutada		
illioilliacion Cobertura Aerea	Nacional	Urbano	Nacional	Urbano	
Resolución Espacial	0,32 m	0,10 m	0,32 m	0,10 m	
Superposición Lateral	30%	60%	30%	60%	
Superposición Longitudinal	60%	80%	60%	80%	
Número de fajas	424	263	424	263	
Longitud total	40.327 km	2.594 km	49.748 km	2.833 km	
Ancho de la faja	7367 m	2302 m	7367 m	2302 m	
Número de fotos	21729	9033	26542	9866	
Número de modelos	21305	8770	26118	9603	

3.2 Ejecución de la Cobertura Aerofotogramétrica

La cobertura aérea fue ejecutada por una aeronave modelo EMB 820C CARAJA de fabricación Embraer, con número de serie 820.147, certificado de registro 11.776 y marca de identificación PT-VDT, y clasificada como convencional de 2 Motores, turbohélice, especialmente adaptada a la toma de fotografías aéreas, equipada con piloto automático, rastreador de satélites de posicionamiento de sistema NAVSTAR - GPS y radar para navegación.

La aeronave está especialmente preparada para esas operaciones, con equipamientos de alta sensibilidad para la adquisición de datos de posicionamiento precisos en el momento de toma las imágenes.

Abajo son listadas las características técnicas de la aeronave:

Velocidad media de crucero: 337 km/h;

Altitud media de vuelo: 6.285 m;

Tiempo medio de ascenso: 10,3 min;

Tiempo medio de descenso: 10,3 min;

Maniobra: 5,0 min;

Autonomía: 4,5 horas;

Techo operacional: 7.010 m.

La Figura 14 muestra la aeronave PT-VDT Carajá utilizada en el Levantamiento Aerofotogramétrico.

Figura 14 - Aeronave PT-VDT modelo EMB 820C CARAJA

La Tabla 10 ilustra informaciones sobre el período de ejecución de las coberturas nacional y urbana.

Tabla 10 – Información sobre período de ejecución de la cobertura aérea nacional y urbana.

Información Cobertura Aérea	Nacional	Urbano
Fecha de Inicio	21/01/2017	10/06/2017
Fecha de Conclusión	22/06/2018	20/06/2018
Horas Totales	365.40 hrs	131.20 hrs
Horas Efectivas	169.90 hrs	67.60 hrs

Para el recubrimiento aerofotogramétrico fue empleada la cámara digital de gran formato. UltraCam-Eagle Prime, equipada con FMS (Flight Management System) denominado X-Track, que asiste a la tripulación en todas las tareas durante la cobertura aérea, garantizando así la calidad esperada.

A continuación se presenta un resumen de las características técnicas de la cámara y demás periféricos:

Cámara aérea digital de gran formato UltraCam Eagle Prime: fabricación de Vexcel Imaging, la cámara está equipada con FMS (Flight Management System), y utiliza un conjunto de 13 de sensores Charge Coupled Device – CCD que captura imágenes de 23.010 x 14.790 píxeles (340 megapíxeles), con una resolución geométrica de 4,6 micrómetros. Esto le permite capturar imágenes aéreas con una resolución real de hasta 2 cm. La cámara se acompaña de dos unidades de almacenamiento con redundancia para la grabación de imágenes, capaz de archivar hasta 7.500 imágenes. Los sensores de esta cámara capturan las imágenes en cinco bandas (PAN R, G, B y NIR) de 16 bits. El sistema de compensación de arrastre se lleva a cabo íntegramente por medios electrónicos a través del dispositivo Time Delayed Integration - TDI;

Figura 15 - Cámara ULTRACAM-Eagle Prime

- Plataforma giroestabilizadora: de fabricación Leica, modelo PAV-80, en la que se montaron las cámaras. La plataforma se utiliza para compensar los movimientos de la aeronave durante el vuelo fotogramétrico hasta una velocidad de 10º/seg y una aceleración de hasta 300º/seg2. Por otra parte, la plataforma permite la corrección de la desviación de la información de datos del sistema inercial causado por los vientos laterales, la reducción de los efectos del vuelo y, de esta manera logra garantizar una mejor estabilidad de las fajas de vuelo.
- Sistema de Gerenciamiento de Vuelo Fotogramétrico: denominado POSTrack que posibilitó el planeamiento de la misión fotogramétrica, definiendo las coordenadas de disparo de cada imagen, garantizando el recubrimiento longitudinal y lateral. Durante la misión, el sistema permitió la visualización del vuelo simultáneamente por el piloto (touchscreen) y por el operador (laptop), posibilitando la selección de las fajas de vuelo y la definición de la mejor maniobra para cada entrada y salida de faja. Además, el sistema monitorea los parámetros necesarios y la buena cualidad de vuelo, tales como: visualización en tiempo real de la calidad de las imágenes, ajustes de contraste y brillo, presencia de nubes, calidad y continuidad de los datos GNSS/IMU y funcionamiento de la plataforma;
- Unidad de Medición Inercial: fabricado por Applanix, modelo AV510, este sistema adquiere y graba durante el vuelo los ángulos de giro residuales (no absorbidos por la plataforma), por medio de un sistema triple de giroscópicos, a una tasa de 250 Hz con una precisión nominal de 0,005°. El sistema también tiene un receptor GNSS geodésico de doble frecuencia que graba los señales de la constelación de satélites a partir de datos tomados por la antena aeronáutica, y una tasa de 1 Hz y que permite una precisión final, pos- procesado, de 5 a 30 cm en el posicionamiento de centro perspectivo de las imágenes.

Figura 16 - Cámara Digital Eagle Prime con plataforma y Sistema GPS/IMU de Applanix

La cámara utilizada durante la adquisición de las fotografías fue gestionada por el software X-Track y el método adoptado para la colecta de datos fue el de Orientación Integrada de Sensores (Integrated Sensor Orientation - ISO).

Este método contempla a utilización conjunta de los sensores de la cámara digital, de una Unidad de Medición Inercial (*Inertial Measurement Unit - IMU*) y un receptor para el posicionamiento por el GNSS.

La ejecución de la cobertura nacional contempló 23 bloques, en función de las características de tiempo de funcionamiento del IMU y la logística operacional. La figura 17 presenta la división de las áreas de aerolevantamiento.

Figura 17 - División de los bloques de aerolevantamiento para la cobertura nacional.

La figura 18 muestra el avance diario del aerolevantamiento en el correr del proyecto para las coberturas nacional y urbana.

Figura 18 - Avance diario de aerolevantamiento de las coberturas nacional y urbana.

3.3 Procesamiento Pos Vuelo

Los datos grabados durante el vuelo fueron extraídos y procesados en el software POSPAC, que posee una solución integrada GNSS/IMU. Utilizando la solución GNSS y el filtro de *Kalman*, al final del proceso, fueron obtenidos los elementos de orientación exterior X, Y, Z de los centros perspectivos y los ángulos ω , ϕ y κ para cada imagen, con alta precisión.

Con ese proceso la cantidad de puntos de Apoyo Complementarios necesarios para la aerotriangulación disminuyó considerablemente, en tanto los datos precisos de posición de los centros perspectivos de la cámara conjuntamente con los datos de orientación de la IMU posibilitan la precisión adecuada con un número mínimo de puntos de apoyo.

Para un mejor entendimiento de la utilización de la solución integrada GNSS/IMU, sigue abajo el flujograma con la descripción de los procesos post vuelo.

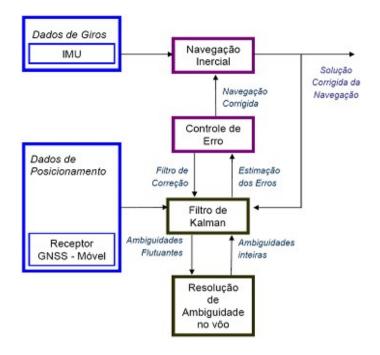


Figura 19 - Flujograma de procesamiento post vuelo.

Abajo siguen las características de la utilización de los datos GNSS/IMU:

- Alta precisión de los datos originales correspondientes a los elementos de orientación exterior determinados en tiempo real y pos-procesados;
- Diminución significativa de los puntos levantados de Apoyo Complementario, eliminando errores de identificación y reduciendo el tiempo para la ejecución de esta etapa:
- Disminución de problemas de depuración de errores groseros en la Aerotriangulación, principalmente por errores en la identificación de puntos fotogramétricos;
- Mayor rapidez en el procesamiento y ajuste de la Aerotriangulación (método ISO), teniendo en vista que los elementos de orientación exterior son previamente obtenidos con gran precisión.

3.4 Procesamiento de las Imágenes

El procesamiento implica el empleo de técnicas especiales para fusión de todo el conjunto de archivos (20 archivos originales de la cámara), formando una única imagen de alta resolución.

Los archivos que componen una imagen de alta resolución se dividen en: 9 imágenes PAN obtenidas por cada CCD, 3 imágenes RGB, 1 infrarroja y 7 archivos de información de las imágenes. Para este proceso, se utilizó el software específico de Microsoft Vexcel denominado UltraMap.

La Figura 20 ilustra los sensores de la UltraCam y las etapas de toma de fotografías componiendo los archivos citados anteriormente.

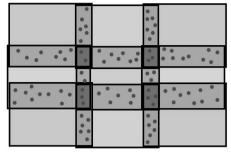


Figura 20 - Sensores UltraCam y 9 imágenes Pancromáticas de alta resolución compuestas en una única imagen de gran formato.

En UltraMap se procedió a la generación de las imágenes a partir del conjunto de 20 archivos (13 imágenes y 7 datos) reuniendo toda la información para iniciar el proceso. En este punto (imágenes brutas), el procesamiento se considera nivel 0.

Posteriormente fue iniciado el Nivel 1, con la integración de todos los archivos brutos (EAD, Level00 y RawQV), generando para cada imagen 37 archivos en formatos *.DFI y *.DAT. En esta etapa también se realizó la importación de la trayectoria resultante del procesamiento GNSS/INS y se procedió con la correlación de los pixeles para determinar los tie points (puntos de amarre) que fueron utilizados en el balance de los colores para la posterior ecualización.

En la etapa siguiente, denominada Nivel 2, ocurre la fusión de las 9 imágenes de alta resolución en una imagen PAN única, una imagen RGB multi-espectral de resolución más baja y también una infrarroja de menor resolución. En este proceso se realizó también el montaje del mosaico de todas las imágenes para que, en conjunto con la máscara creada de forma automática y los tie points, el software proceda con la homogeneización de los colores, obteniendo un mosaico lo más uniforme posible.

En este momento (imágenes Nivel 2), se establecen los parámetros de procesamiento de las imágenes y las condiciones de contraste y brillo para la realización del ajuste radiométrico.

Por último, se realizó el procesamiento de Nivel 3 para la obtención de las imágenes finales de alta resolución y se exportaron los archivos en los formatos *.TIFF y *.JPG – resolución radiométrica de 8 y 16 bits – con la composición de las bandas RGB y RGBI.

En el análisis de calidad de las imágenes fueron observados sus aspectos visuales y los criterios esenciales para asegurar la mejor calidad de los productos derivados.

En síntesis, los principales puntos analizados en el proceso fueron la resolución radiométrica, la resolución espectral y el padrón visual de las imágenes.

Figura 21 - Ejemplo de imagen en composición RGB de la Cobertura Nacional.

Figura 22 - Ejemplo de imagen en composición RGB de la Cobertura Urbana.

3.5 Elaboración del Fotoíndice

Después del tratamiento de las imágenes, fueron producidos los fotoíndices por bloque, a través de la composición de fotografías aéreas que fueron numeradas secuencialmente y montadas conforme a superposiciones longitudinales y laterales en dirección a la línea de vuelo.

La generación de cada fotoíndice estuvo basada en la división de los bloques de la cobertura aérea.

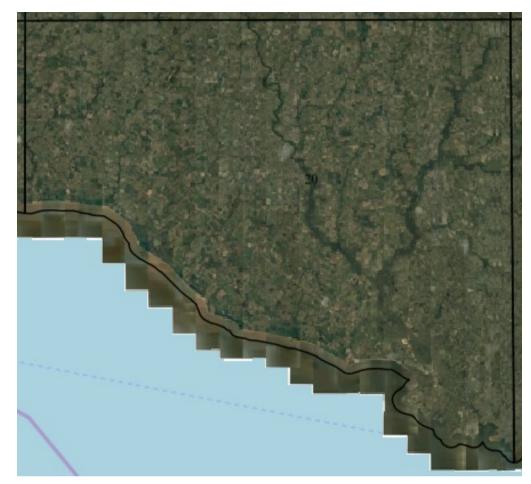
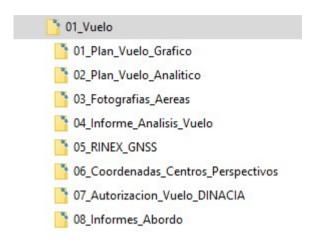


Figura 23 - Visión general del fotoindice BN20 de la Cobertura Nacional.


Figura 24 - Numeración secuencial de las fotos del fotoindice BN20 de la Cobertura Nacional.

3.6 Registro Control de Calidad y Entrega Insumos

Una síntesis de los registros de control de calidad e insumos entregados en la Cobertura Aérea pueden ser observados a continuación:

01_Vuelo

01_Plan_Vuelo_Gráfico

Planificado

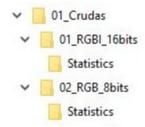
Los archivos del Plan de Vuelo Gráfico planificado fueron entregados en los formatos KMZ y SHP (con su respectivo archivo de sistema de coordinadas PRJ). Son los mismos archivos que se entregaron en el Plan de Trabajo - Anexo04 y tienen la información de las pistas, las fotografías "huella" y los centros perspectivos referentes a cada Bloque.

Ejecutado

Los archivos del Plan de Vuelo Gráfico ejecutado fueron entregados en los formatos KMZ y SHP (con su respectivo archivo de coordenadas PRJ). Son los archivos adquiridos con los datos de vuelo y contienen la información de los centros perspectivos. Contienen información sobre la altitud ortométrica. También se encuentra el archivo SHP de los "footprints" ejecutados.

02_Plan_Vuelo_Analítico

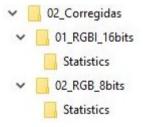
Los archivos de los Planes de Vuelo Analítico fueron entregados en formato TXT. Son los mismos archivos que se entregaron en el Plan de Trabajo - Anexo04 y tienen



información acerca de la configuración del plan de vuelo como los Términos de Referencia.

03 Fotografias Aéreas

01_Crudas


RGBI_16bits

Las imágenes "crudas" RGBI 16bits fueron entregadas en formato TIFF (con su respectivo archivo de georreferenciación aproximada TFW y sus metadatos XML).

RGB_8bits

Las imágenes "crudas" RGB 8bits fueron entregadas en formato JPG (con su respectivo archivo de georreferenciación aproximada JGW y sus metadatos XML).

02_Corregidas

RGBI_16bits

Las imágenes "corregidas" RGBI 16bits fueron entregadas en formato TIFF (con su respectivo archivo de georreferenciación aproximada TFW y sus metadatos XML).

RGB_8bits

Las imágenes "corregidas" RGB 8bits fueron entregadas en formato JPG (con su respectivo archivo de georreferenciación aproximada JGW y sus metadatos XML).

03_Fotoindice

El Fotoíndice fue entregado en un archivo por cada bloque en formato ECW y también un archivo en formato "shapefile" (SHP) con información de las nomenclaturas de las imágenes.

04_Control_de_Calidad

Para el control de calidad se entregaron dos archivos SHP, uno con la información de las imágenes y otro con la información de la verificación de las imágenes en las que se registraron eventos.

04_Informe_Análisis_Vuelo

Para el análisis del vuelo fueron entregados informes gráficos generados por el software POSPac con el procesamiento de la trayectoria por cada día de vuelo. Son 3 informes diarios; el primero presenta los RMS, el segundo muestra las distancias de las líneas de base entre la toma de la foto y las estaciones de tierra GNSS en suelo y la tercera muestra los ángulos de rotación de XYZ.

05_RINEX_GNSS

Los archivos RINEX de las estaciones de la red GNSS REGNA-ROU y virtuales para el vuelo fueron entregados por cada día de vuelo.

06_Coordenadas_Centros_Perspectivos

Para las coordenadas de los centros perspectivos fueron entregadas planillas por cada día de vuelo con la información de las coordenadas planificadas, las coordenadas ejecutadas, las desviaciones posicionales y los desvíos de actitud (omega, phi, kappa).

07_Autorización_Vuelo_DINACIA

Fue entregado el permiso de vuelo emitido por la DINACIA.

08_Informes_Abordo

Fue entregado un informe de registro de día de vuelo con información registrada por la tripulación referente a las fajas de vuelo realizadas, foto inicial y foto final, hora de inicio y hora final y parámetros de diafragma, obturador, dirección y deriva.

4 AEROTRIANGULACIÓN

El objetivo de la Aerotriangulación fue calcular los parámetros de orientación externa para las imágenes, teniendo como resultado las coordenadas X, Y, Z de los centros perspectivos y los ángulos ω , φ y κ de la cámara en el momento de la toma de las imágenes (Figura 25).

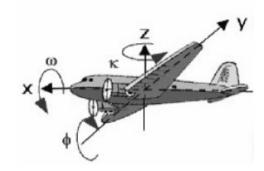


Figura 25 - Parámetros de Orientación Exterior.

Para la cobertura nacional la ejecución de la aerotriangulación contemplo 23 bloques, mantenido lo planificado para el recubrimiento aéreo.

La figura 26 presenta la división de las áreas y los respectivos bloques de aerotriangulación.

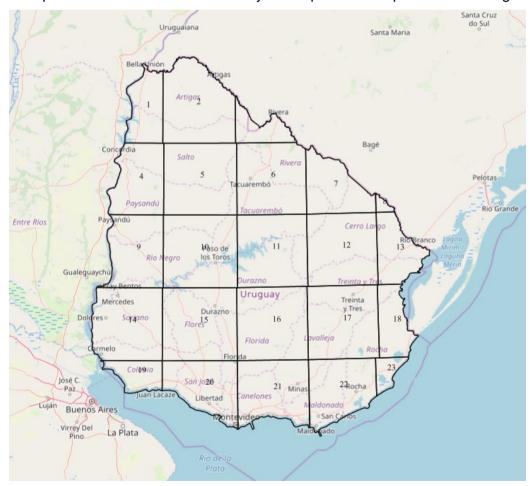


Figura 26 - División de los bloques de aerotriangulación para la cobertura nacional

La Tabla 11 describe la relación de los bloques de aerotriangulación para la cobertura nacional y la cantidad de imágenes correspondiente.

Tabla 11 - Relación de bloques de aerotriangulación para la cobertura nacional

Cobertura Nacional	Número de fotos
BL01	652
BL02	1286
BL03	385
BL04	895
BL05	1188
BL06	1179
BL07	784
BL08	74
BL09	990
BL10	1250
BL11	1290
BL12	1154
BL13	635
BL14	1248
BL15	1414
BL16	1358
BL17	1138
BL18	576
BL19	348
BL20	999
BL21	1179
BL22	883
BL23	239
Total	21144
Total compartidas	171
Neto	20973

En el caso de la cobertura urbana la aerotriangulación fue realizada en su gran mayoría por localidad y el envío de los insumos contempló 8 (ocho) entregas.

La Tabla 12 describe la relación de las áreas aerotrianguladas en la cobertura urbana, y el detalle de cada lote de entrega y las respectivas cantidades de imágenes.

Tabla 12 - Relación de los bloques de aerotriangulación en la cobertura urbana.

 CU01
 CU02
 CU03
 CU04
 CU05
 CU06
 CU07
 CU08

ACS	10
CAN	50
CLO	60
LCS	10
LIB	38
ROD	10
ROS	36
SAO	9
SBA	9
SRA	22
TOTAL	254

CDP	152
CVE	24
EPR	21
JLL	38
LPS	357
NHA	66
NPA	101
SCE	28
SJM	101
SRN	30
TAR	28
TLA	28
TOTAL	974

ADA	151
CLL	34
CNA	30
DZN	163
EOS	26
FDA	77
LFA	121
MIG	9
PDA	30
PIR	145
PTS	75
RCH	105
SCA	10
SDY	33
SGE	31
SJO	9
SOL	26
TDO	80
VDC	28
TOTAL	1183

MVD 01	288
MVD 02	1400
MVD 03	656
TOTAL	2344

AIG	9	DOL	57
CDS	135	JPV	36
CHY	32	LNO	36
GZZ	5	MIN	99
MER	96	MLO	128
MON	10	ODL	24
scs	92	PACHY	7
STO	262	PCS	6
TRI	53	SLA	27
YOU	52	TYT	166
TOTAL	746	TOTAL	586

L	ART	87
	LGS	8
	MDO 01	664
	MDO 02	305
	QCH	13
	ТВО	186
	TOTAL	1263

BEL	18
BUN	34
FBS	109
GCH	32
PSD	298
PVN	7
RBO	70
RVR	190
TAM	11
TRA	39
TOTAL	808

TOTAL CU: 8158

Se realizó el proceso de aerotriangulación de forma totalmente digital, a partir de las fotos aéreas obtenidas. A continuación, son descritas algunas ventaias del proceso de aerotriangulación. realizado en la fotogrametría digital en comparación al método tradicional:

- La fotogrametría digital no tiene pérdida de precisión por desgaste natural de las piezas analógicas y por la transmisión de ampliaciones foto/modelo a través de engranajes.
- La transferencia de puntos de un modelo para otro es realizada fácilmente por el operador, visualizando simultáneamente los dos modelos digitales en cuestión, a través de los dos modelos matemáticos de correlación, sin la necesidad de perforar la emulsión de las diapositivas como se hacía en los instrumentos analógicos/analíticos.
- El modelo digital es orientado solamente una vez, mientras que en los instrumentos analógicos/analíticos es necesario realizar una nueva orientación para cada reposición del modelo y para posibles relecturas.

Para el desarrollo de esta etapa, se utilizó el software Match-AT desarrollado por la empresa Inpho, cuyo ajuste se basa en el método de paquetes perspectivos (bundle block adjustment), y la unidad de proceso es la imagen.

Se puede mencionar las siguientes ventajas del software utilizado en la etapa de aerotriangulación:

- Riguroso ajuste por el método de paquetes perspectivos (bundle block), que permite el ajuste de bloques de diferentes tamaños y formas;
- Disponibilización de varias herramientas de análisis espacial y visualización de informes, facilitando la interpretación de los datos y la intervención de usuarios en la identificación y la corrección de posibles inconsistencias:
- Procedimientos de correlación altamente sofisticados, en tanto se utilizan modelos matemáticos y estadísticos robustos;
- Se destaca también su interfaz perfectamente estructurada para utilización de los datos provenientes del vuelo apoyado, convergiendo los resultados finales del ajuste en menor tiempo y con mayor precisión.

En el proceso de Aerotriangulación, fue empleado el método ISO - Integrated Sensor Orientation, con la introducción de las mediciones GNSS/INS (Figura 27), sumado a los datos de los puntos de Apoyo de Campo y de los respectivos puntos homólogos en la imagen.

Vale resaltar que la cantidad y la distribución de los puntos de Apoyo de Campo garantizó las precisiones esperadas en el resultado de la Aerotriangulación para la elaboración de los productos cartográficos para las coberturas nacional (1:10.000) y urbana (1:1.000).

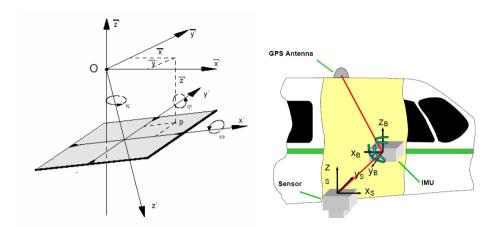


Figura 27 - Elementos necesários para la orientación exterior y la obtención directa durante el vuelo para empleo del Método ISO - Integrated Sensor Orientation

Con la aplicación de esta metodología, hubo una optimización en la obtención de resultados en relación a los métodos clásicos comúnmente utilizados, teniendo en vista que las coordenadas de los centros perspectivos de las fotos y sus respectivos ángulos de orientación fueran previamente determinadas durante el recubrimiento aerofotogramétrico conforme fue descrito anteriormente.

En la etapa de Aerotriangulación, los datos de orientación obtenidos durante el vuelo fueron refinados a través de la determinación automática y asistida de los puntos de Grüber (*tie points*) y por la inserción de los puntos tomados en campo. Este proceso tuvo como objetivo la eliminación de posibles errores sistemáticos y la obtención de la precisión deseada.

Inicialmente, se introdujo en el software Match-AT todas las informaciones relevantes para la concepción del proyecto, el estabelecimiento de los padrones de precisión del ajustamiento y los datos del sensor utilizado.

Con los datos provenientes del Apoyo de Vuelo (coordenadas de los centros perspectivos y los ángulos de orientación de las fotografías) y la disponibilización de las imágenes, los modelos fueron preliminarmente orientados en el software Match-AT.

Por intermedio de las herramientas robustas de correlación, se generan los puntos de enlace (*tie points*) entre los modelos, insertándose a través de la lectura estereoscópica de los puntos colectados en el apoyo complementario.

Después de finalizar las etapas anteriormente mencionadas se realizó el ajuste de los bloques, observando los resultados estadísticos y el análisis gráfico de la distribución del amarre de los *tie points*.

Al final del proceso, fue disponibilizado el informe de procesamiento y ajuste de la Aerotriangulación demostrando todas las informaciones necesarias para la interpretación y análisis de los datos.

Los datos de orientación exterior fueron exportados para ser utilizados por las estaciones fotogramétricas de restitución en la orientación de los modelos estereoscópicos y para la generación de las ortoimágenes de la cobertura nacional.

A continuación, es descrito un resumen de la etapa de aerotriangulación:

DATOS DE ENTRADA

- Centros de proyección y ángulos de orientación aproximados de las fotografías, determinados por el receptor GPS y IMU durante la cobertura aerofotogramétrica;
- Imágenes Digitales en formato TIFF;
- Puntos de Campo (Apoyo Complementario);
- Datos Adicionales (altura media del terreno e informaciones de certificado de calibración de la cámara).

CÁLCULO

- Generación de Proyecto de Aerotriangulación: introducción de las coordenadas y giros (debidamente posprocesados en la etapa de cobertura aerofotogramétrica), los datos de entrada como: calibración de la cámara, coordenadas de los puntos de apoyo y de verificación, altura media del terreno, altura de vuelo e imágenes digitales (generación de las imágenes piramidales y tamaño de pixel). Los puntos de verificación fueron utilizados para validar la calidad de la aerotriangulación.
- Orientación Interna: para procesamiento de la orientación interna de las imágenes fue necesario la inserción de los datos del certificado de calibración (distancia focal, posición de punto de colimación, posición del punto principal, corrección de esfericidad y corrección de refracción);
- Inicio del proceso: definir la localización de las áreas de Von Grüber; los puntos de partida son los valores aproximados de X, Y, Z, Omega (ω), Phi (φ) y Kappa (κ);
- Generación de los *Tie Points* y Puntos de Enlace: en la aerotriangulación automática se generó un gran número de puntos, de manera automatizada, en las áreas conocidas como de Grüber. Estos puntos permiten la ligación de modelos y fajas (Figura 28);
- Medición de los Puntos de Apoyo: realizada la generación los *Tie Points*, la lectura de los puntos de Apoyo Complementario es hecha de modo asistida y en estéreo, asegurando la perfecta localización y consistencia de cada punto (Figura 29);
- Pos-procesamiento: en esta fase se realiza el ajuste matemático del bloque, describiendo los residuos de los puntos de enlace (*Tie Points*), control (GCP) y verificación (check). Se usa el sistema de detección de errores denominado "*Automatic blunder detection*". El Análisis de resultados es hecho de forma gráfica y numérica, y se realiza el número de interacciones necesarias hasta la convergencia de los resultados establecidos (Figura 30).

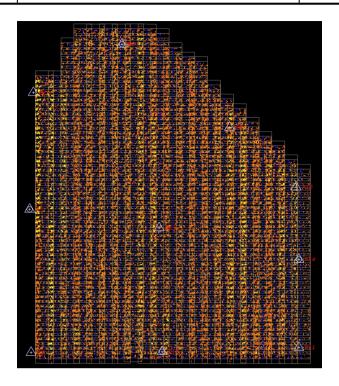


Figura 28 - Ejemplo de la distribución automática de los puntos de enlace generados en el software Match-AT, después del proceso de correlación automática.

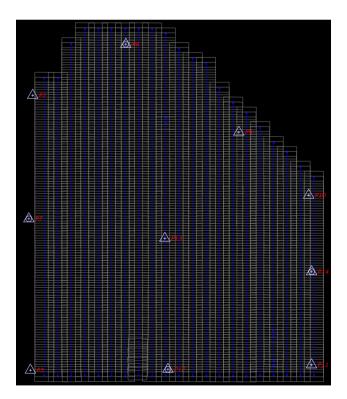


Figura 29 - Ejemplo de la distribución de los puntos de Apoyo Complementarios en el bloque de aerotriangulación.

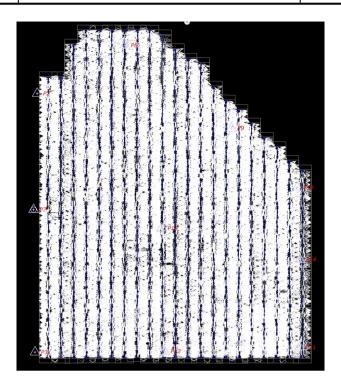
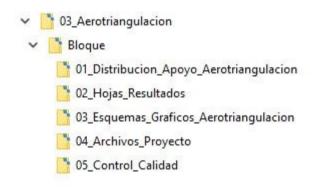



Figura 30 - Ejemplo del análisis gráfico de la distribución y amarre de los Tie Points. Cada vector representa la ligación entre los puntos de enlace y sus respectivas lecturas en los modelos. Se nota el gran volumen de puntos, la alta rigidez y eficiencia del modelo matemático de correlación del Match-AT.

Durante el proceso de aerotriangulación se realizó un riguroso control de calidad de todas las etapas, entre las cuales están: análisis de orientación interna, verificación de densidad y distribución de los *Tie Points* y validación de los resultados estadísticos, destacándose el estudio comparativo de las coordenadas de los puntos de verificación.

4.1 Registro Control de Calidad y Entrega Insumos

Una síntesis de los registros de control de calidad e insumos entregados en Apoyo de Campo pueden ser observados a continuación:

03_Aerotriangulación (AT)

01_Distribución_Apoyo_Aerotriangulación

Se entregará el archivo con los puntos de Apoyo Complementario utilizados en la aerotriangulación en formato shapefile (SHP).

02_Hojas_Resultados

Se entregó una planilla de resultados de aerotriangulación con los parámetros de desvío estándar.

03 Esquemas Gráficos Aerotriangulación

Se entregó un archivo con los puntos de enlace de la Aerotriangulación en formato SHP.

04_Archivos_Proyecto

Se entregó el archivo referente al proyecto para la aerotriangulación en formato PRJ.

05_Control_de_Calidad

Fueron entregados los archivos de control de calidad realizados para la aerotriangulación, incluyendo un informe de las diferencias GCP, un informe de resultados de la aerotriangulación y gráficos que muestran los puntos de Apoyo Complementario usados en la aerotriangulación y los puntos de enlace.

5 HIDROGRAFÍA

En líneas generales podemos definir hidrografía como un conjunto de objetos geográficos, naturales y artificiales, que integran el sistema marítimo, fluvial y lacustre.

El Modelo Digital de Elevación Hidrológicamente Consistente (MDTHC) tiene como propósito principal representar adecuadamente el relieve de la región en estudio, posibilitando el análisis y la ejecución de simulaciones de los procesos hidrológicos.

Los datos de hidrografía contribuiyen de manera significativa para la generación de un Modelo Digital de Terreno Hidrológicamente Consistente (MDTHC) contemplando las escalas de mapeamiento 1:1.000 y 1:10.000.

5.1 Adquisición datos de Hidrografía

Para la extracción de las informaciones fueron utilizados como fuente de datos el levantamiento aerofotogramétrico (imágenes) y la aerotriangulación. Toda la adquisición vectorial fue realizada a partir del empleo de estaciones fotogramétricas (ambiente estereoscópico 3D).

Algunos elementos fueron extraídos planimetricamente debiendo ser considerados como casos especiales, dentro de los cuales se encuentran: Bajo Drenaje, Salto, Bañado, Área Húmeda, Rápido, Playa, Dique, Rambla, Escollera, Muelle, Espigón y Puerto.

Se utilizó como plataforma para la restitución aerofotogramétrica el software DTMaster de la empresa Inpho. Las figuras 31 y 32 ilustran la captura de los datos vectoriales de hidrografía para las Coberturas Nacional y Urbana.

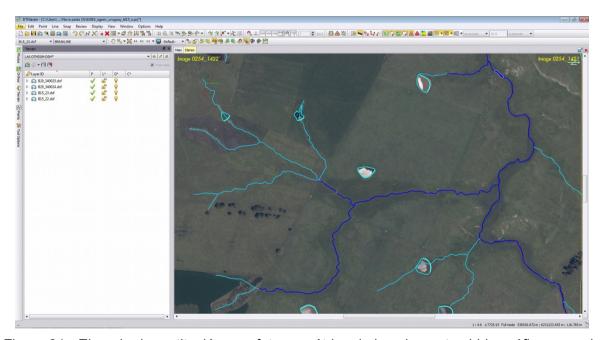


Figura 31 - Ejemplo de restitución aerofotogramétrica de los elementos hidrográficos para la Cobertura Nacional.

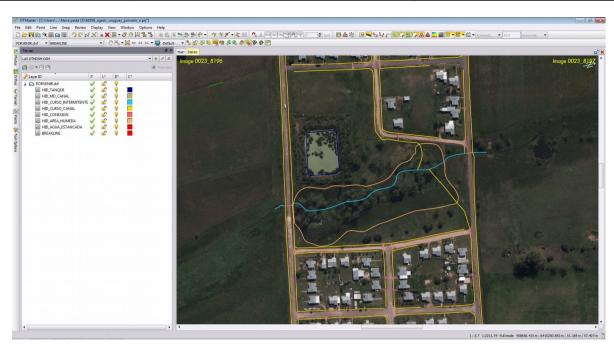


Figura 32 - Ejemplo de restitución aerofotogramétrica de los elementos hidrográficos para la Cobertura Urbana.

Durante el proceso de restitución aerofotogramétrica, fueron observadas todas las especificaciones y normativas establecidas para la extracción de los datos vectoriales de hidrografía.

El cuadro que resume todas las definiciones y reglas utilizadas en la captura de las informaciones para las Coberturas Nacional y Urbana pueden ser observados en los ANEXOS 01 y 02, respectivamente.

5.2 Edición de los datos de Hidrografía

Después de la extracción vectorial los datos pasaron por un riguroso proceso de edición y validación topológica.

A continuación son descritos los pasos empleados en la etapa de Edición Cartográfica:

- Análisis comparativo entre los datos vectoriales con las ortoimágenes para identificar posibles omisiones en el proceso de restitución aerofotogramétrica y la consistencia en la clasificación de los temas;
- 2) Edición preliminar del archivo vectorial utilizando el software AutoCAD;
- 3) Análisis topológico de la base de datos vectorial a partir de rutinas específicas del software ArcGIS;

Figura 33 - Ejemplo del resultado de la validación topológica realizada en el software ArcGIS para la Cobertura Nacional.

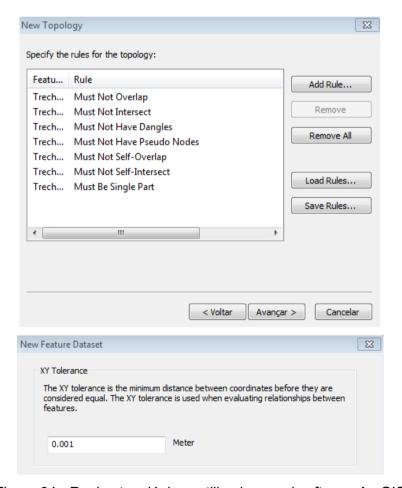


Figura 34 - Reglas topológicas utilizadas en el software ArcGIS

4) Importación de la base de datos vectorial para el Banco de Datos espacial PostGIS; En esta fase, la información fue modelada de acuerdo a la estructura establecida en el Catálogo de Obietos del proyecto.

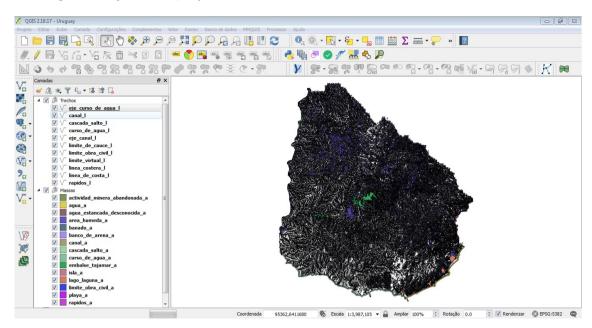


Figura 35 - Base de datos de la Cobertura Nacional en el Banco de Datos Post GIS

- 5) Transcripción de las toponimias a partir del mapeamiento 1:50.000 brindado por el contratante;
- 6) Generación de las rutinas finales para identificación y corrección de las inconsistencias apuntadas en el proceso;

Figura 36 - Lista de rutinas utilizadas en el Banco de Datos Post GIS

7) Exportación de los productos finales en los formatos Shapefile y Banco de Datos PostGIS con sus respectivos metadatos.

5.3 Registro Control de Calidad y Entrega Insumos

Una síntesis de los registros de control de calidad e insumos entregados en Apoyo de Campo pueden ser observados a continuación:

04_Cartografía

01_Hidrografía

Se entregan en formato .SHP 3D los elementos de hidrografía junto con el banco de datos geográficos en formato PostGIS.

6 GENERACIÓN DEL MODELO DIGITAL DE TERRENO (MDT) Y MODELO DIGITAL DE SUPERFICIE (MDS)

6.1 Modelo Digital de Terreno (MDT)

El Modelo Digital de Terreno (MDT) fue generado a través de Match-T, software de Inpho destinado a la elaboración de modelos digitales automáticos por intermedio de algoritmos de correlación.

Los archivos utilizados para la generación de MDT son los provenientes de la Aerotriangulación y de la Cobertura Aérea, junto a los elementos de hidrografía y líneas de quiebre (*breaklines*) obtenidos en el proceso de restitución. Esto asegura la compatibilidad de la información para un mejor modelaje del terreno.

La generación de las nubes de puntos fue hecha a través de la correlación de pixeles de las imágenes. El método se basa en recursos de correspondencia a ser aplicados jerárquicamente en pirámides de imágenes y en una reconstrucción de la superficie sólida con elementos finitos.

La resolución del modelo es determinada por el espacio entre los puntos de la malla regular. El espacio puede ser aumentado o disminuido de acuerdo con la complejidad del relevamiento o de la densidad urbana: al disminuir el espacio, el modelo poseerá una mejor resolución, representando la superficie del terreno con más detalle.

El tamaño de los bloques de procesamiento varía en función de la calidad de las imágenes y la densidad de puntos.

Los criterios utilizados para la generación de MDT para las coberturas Nacional y Urbana pueden ser observados en la Tabla 13.

Tabla 13 – Criterios utilizados para la generación de MDT para las coberturas Nacional y Urbana

Información Técnica	Cobertura Nacional	Cobertura Urbana
Área	178.290 km²	1.235 km²
Escala Mapeamiento	1:10.000	1:1.000
Resolución Espacial	0,32 m	0,10 m
Intervalo Malla Regular de Puntos	2,5 m	1,00 m
Exactitud (z) - 95% de confiabilidad	1,50 m	0,30 m

El límite útil de los modelos estereoscópicos fue generado automáticamente por el software. Se evita utilizar información en los bordes de las imágenes, siempre que en estas regiones hubiese una mejor opción de utilización en la imagen siguiente.

Como resultado del procesamiento, el producto generado en esta fase consistió en una malla de puntos espaciada regularmente y representada a través de sus coordenadas E, N y H.

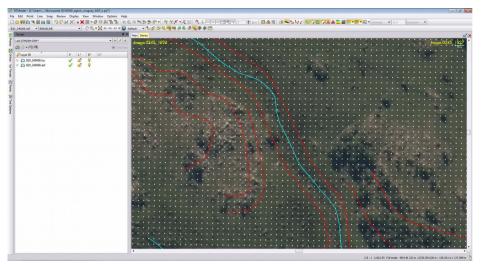


Figura 37 - Generación de Malla de Puntos con intervalo de 2,5 metros (Cobertura Nacional).

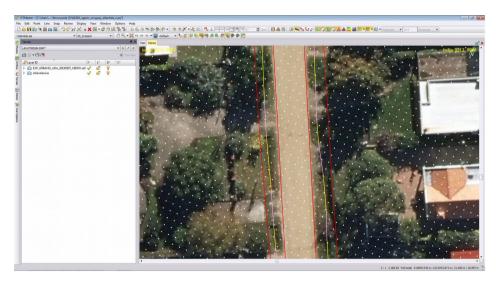


Figura 38 - Generación de Malla de Puntos con intervalo de 1 metro (Cobertura Urbana).

Posteriormente, fue utilizado el software DTMaster de la empresa Inpho para la validación y realización de eventuales ediciones en los casos donde ocurrieran distorsiones en el modelo generado en relación a la superficie del terreno.

La etapa de verificación es realizada en ambiente tridimensional. A lo largo del proceso también fueron validadas la completitud del bloque y la densidad de los puntos obtenidos.

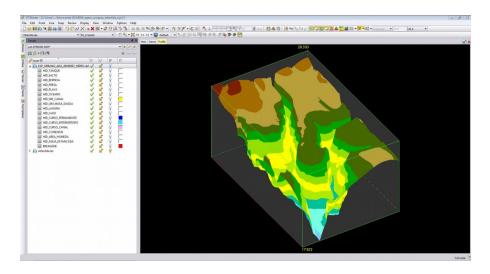


Figura 39 - Ejemplo de ambiente de análisis y edición de software DTMaster.

Todos los datos fueron orientados para la generación de una malla de puntos MDT dentro de los requisitos del proyecto, para permitir la generación consistente de las curvas de nivel en ambas escalas de mapeamiento.

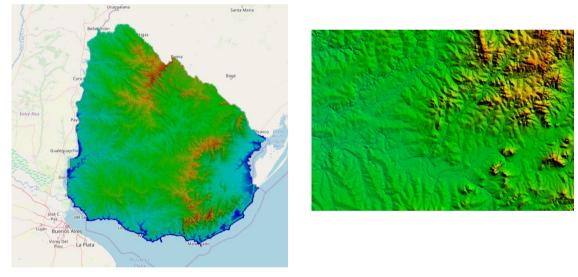


Figura 40 - Ejemplo de MDT con resolución de 2,5 metros (Cobertura Nacional).

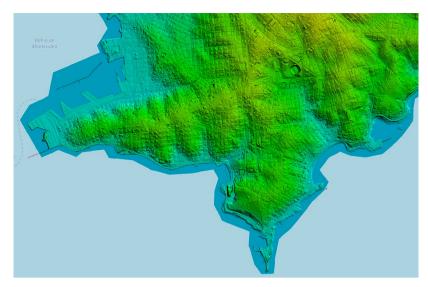


Figura 41 - Ejemplo de MDT con resolución de 1 metro (Cobertura Urbana).

Entre las ciudades mapeadas existían localidades donde el modelaje de la superficie del terreno contó con una fuente de datos adicional, una nube de puntos obtenida por perfilamiento laser. En estos casos la malla regular de puntos fue obtenida a través de los datos laser a través del proceso de correlación de pixeles.

La Tabla 14 presenta el conjunto de ciudades ejecutadas con datos laser.

MONTEVIDEO
MALDONADO - PUNTA DEL ESTE - OTRAS
CIUDAD DE LA COSTA
PANDO
SANTA LUCIA
LA PAZ - LAS PIEDRAS - PROGRESO
SALINAS Y OTRAS
SAUCE
JOAQUIN SUAREZ
SAN RAMON
TOLEDO Y OTRAS
FRACCIONAMIENTO CNO. ANDALUZ Y OTRAS
EMPALME OLMOS
SAN ANTONIO
SAN BAUTISTA
SAN JACINTO
SANTA ROSA
SALTO
PAYSANDU
DURAZNO

Tabla 14 - Conjunto de localidades ejecutadas con datos laser

6.2 Modelo Digital de Superficie (MDS)

El MDS es un producto cartográfico obtenido de un modelo matemático que representa el suelo y los accidentes que se encuentran por encima del suelo (edificios, puentes, vegetación, entre otros) en una forma continua y suavizada, a partir de datos tomados del mundo real debidamente estructurados. El MDS fue obtenido en las áreas urbanas a partir de la correlación de pixeles que utilizan el software UltraMap con referencia de 1 punto/pixel para generar True Ortofotos.

Los MDS fueron generados únicamente por las zonas urbanas y cumplen los siguientes requisitos:

- La nube de puntos MDS tiene una densidad horizontal de 100 puntos/m² y se genera automáticamente a partir del algoritmo de correlación de software UltraMap.
- Se proporciona el MDS, derivado de los datos correlacionados, en el formato vectorial *.LAS y en formato ráster *.Geotiff.
- La nube de puntos con informaciones de coordenadas x, y, z están coloreadas por la información pictórica de la imagen.
- El Control de Calidad consistió en el análisis visual de la integridad, la densidad y la adhesión a las Ortofotos verdaderas.

En función del tamaño de los archivos, el software Ultramap sugiere una grilla de 200 x 200 m, generada de forma aleatoria para cada polígono de mapeamiento, en donde cada archivo contempla un área de 0.04km².

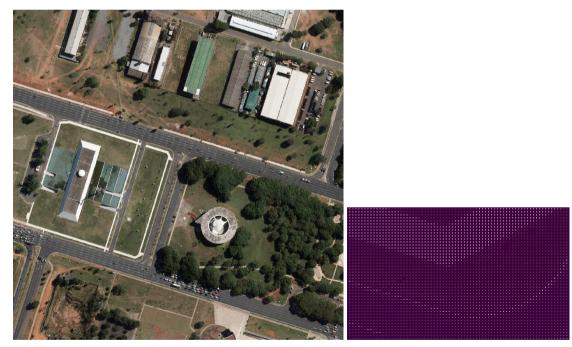


Figura 42 – Ejemplo de MDS considerando una malla de puntos de 10cm.

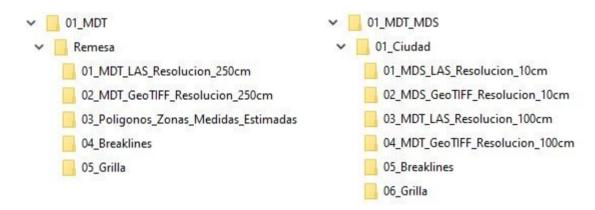



Figura 43 – Ejemplo de MDS con resolución de 10cm.

6.3 Registro Control de Calidad y Entrega de Productos

Una síntesis de los registros de control de calidad y productos entregados puede ser observada a continuación:

1. MDT_MDS

LAS Resolución 250cm/100cm

La nube de puntos de los modelos digitales del terreno hidrológicamente consistentes se proporciona en formato .LAS y se cortan según las grillas de hojas definidas en la articulación.

GeoTIFF Resolución 250cm/100cm

Se proporcionan los MDTHC, derivados de los datos tratados manualmente por estéreo restitución en formato GEOTIFF con su respectivo archivo de georreferenciación aproximada TFW y respetando las hojas previamente definidas en la articulación.

GeoTIFF Resolución 10 cm

Se proporcionaron los modelos de superficie con su respectivo archivo de georreferenciación aproximada TFW y respetando las hojas previamente definidas en la articulación.

LAS Resolución 100 cm

La nube de puntos de los modelos digitales de superficie se proporcionó en formato .LAS y se cortó según las grillas de hojas definidas en la articulación.

Polígonos de Zonas Medidas Estimadas

Se entregan en formato .SHP los polígonos de las zonas estimadas; que son aquellas regiones en las que por algún motivo no se pudo realizar la medición directa, por ejemplo en zonas forestadas superiores a las 10 hectáreas.

Breaklines

Se entrega en formato .DXF las breaklines generadas en el proceso de MDT.

Grilla

Se entrega la grilla en formato .SHP correspondiente al modelo de articulación del MDT y las ortoimágenes.

7 Generación de Ortoimágenes

Las ortoimágenes fueron obtenidas a partir de la corrección de las distorsiones presentes en las fotografías aéreas, incluido el que surge de las variaciones del relieve, teniendo como objetivo reproyectar la escena de una fotografía que se encuentra en la proyección cónica, en una nueva imagen, ahora en proyección ortogonal. Para la generación de las ortofotos fueron necesarias tres fuentes de datos esenciales: imágenes, los elementos de orientación exterior (aerotriangulación) y el Modelo Digital de Terreno.

El proceso de generación del ortomosaico implica las siguientes actividades: Preparación de MDT, Ortorectificación, Mosaico, Tratamiento y Corte de las hojas.

7.1 Ortorectificación

La ortorrectificación de las imágenes para la generación de las ortofotos digitales fue realizada a partir del software OrthoMaster, siendo utilizados todos los datos descritos anteriormente. En esta etapa fueron observadas y atendidas todas las especificaciones respecto a la precisión, el formato de entrega y el valor de la resolución espacial.

Durante el proceso de ortorretificación, para la interpolación fue utilizado el método cúbico para el re muestreo de la imagen. El principio utilizado para la construcción de las ortofotos digitales está basado en el siguiente concepto: dada la posición de un futuro pixel en el plano cartográfico, por las coordenadas de centro de cuadrado que representa, se determina la altitud de este punto, con la ayuda del MDT. Con las tres coordenadas (X, Y, Z) del punto y conociendo los parámetros de recesión de la foto, con auxilio de las ecuaciones proyectadas, se encuentra la posición de este punto en la imagen.

Cuando se encuentra un pixel exactamente en esta posición, su color es copiado en la posición del punto en cuestión en la ortofoto. En caso contrario, se realiza una aproximación. Los criterios para esto consisten en una media entre los pixeles vecinos, a través de interpoladores. El color del pixel es dado por el algoritmo y adoptado por el pixel de la futura ortofoto digital. La Figura 44 ilustra este proceso. La resolución de las ortofotos de la Cobertura Nacional fue de 32cm para la escala de mapeamiento 1:10.000.

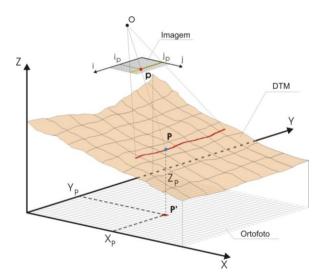


Figura 44 - Principio de la ortorretificación, Fuente: Adaptado de ANDRADE (1998).

La ecuación de colinealidad parametrizada y utilizada para obtenerse una solución más

precisa en la determinación de las coordenadas de la foto, las cuales, a su vez son transformadas para coordenadas de imagen por intermedio de transformaciones planas específicas.

7.2 Mosaico, Tratamiento y Corte de las Hojas

La elaboración del mosaico se basa en la unión de dos o más ortofotos con superposición para crear una representación continua de toda el área cubierta. Para ello fue utilizado el *software* OrthoVista del fabricante Trimble Inpho.

Inicialmente el *software* genera las líneas de corte de forma automática a partir de la definición de las mejores alternativas para el proceso de mosaico. Posteriormente es realizada una revisión de las opciones sugeridas por el programa y cuando es necesario se realiza una edición.

Las ortofotos fueron tratadas en un ambiente bidimensional, dispuestas de acuerdo con su ubicación, de forma de posibilitar el corte a través de las características del terreno de cada ortofoto.

Durante el proceso fue realizada la ecualización radiométrica de las ortofotos. El ajuste radiométrico se basa en la técnica de alargamiento del histograma, tomando como punto de partida los valores de máximo y mínimo brillo de las imágenes del bloque

En la primera etapa del proceso de ecualización, es realizado un ajuste global basado en datos de los histogramas de cada imagen. Posteriormente, se efectúa un análisis y tratamiento de las regiones donde el padrón radiométrico necesita ser revisado para garantizar la homogeneidad de las ortofotos. Al final, las ortofotos son unidas y guardadas en un único archivo, denominado mosaico.

Terminada la etapa de mosaico, éste fue sometido a técnicas de realce y balanceo de color. En la secuencia se cortó el mosaico, ya que su tamaño es significativo. Para ello, fue utilizada la articulación definida para el mapeamiento 1:10.000 considerando una sobreposición entre las hojas de 500 pixeles.

El ajuste de las hojas de ortofoto consiste en equiparar los histogramas de las imágenes. Este ajuste es puntual y tiene como objetivo ajustar las zonas donde el ajuste global no fue efectivo y donde las diferencias aún permanecen, después de un análisis visual del conjunto de las ortoimágenes.

Figura 45 - Ejemplos de ortoimágenes en la composición NIR (izquierda) y RGB (derecha) de la Cobertura Nacional.

En lo referente a las ortoimágenes de la Cobertura Urbana (True Ortho) se destacan algunas particularidades en el proceso de generación:

- 1) Escala de mapeamiento 1:1.000 considerando la resolución espacial de 10cm;
- 2) Cobertura aérea con recubrimiento especifico (mayor) entre las imágenes posibilitando un mayor número de observaciones de un mismo objeto;
- 3) El software utilizado fue UltraMap de la empresa Vexcel;
- 4) Se generó una aerotriangulación específica por intermedio del modulo AT (Aerial Triangulation) del software UltraMap para la obtención de los Elementos de Orientación Exterior de las imágenes;
- 5) Se utilizó el Modelo Digital de Superficie (MDS) generado en el software UltraMap a través del módulo DM (Dense Matcher).

Figura 46 - Ejemplo de ortoimagen en la composición RGB de la Cobertura Urbana considerando la escala de visualización 1:1.000.

Tabla 15 - Informaciones técnicas de las ortofotos digitales

Información Técnica	Cobertura Nacional	Cobertura Urbana
Área	178.290 km²	1.235 km²
Escala Mapeamiento	1:10.000	1:1.000
Resolución Espacial	0,32 m	0,10 m
Exactitud (x,y) - 95% de confiabilidad	1,00 m	0,20 m

7.3 Registro Control de Calidad y Entrega Productos

2. Ortoimágenes

RGBI 16bits

Se entrega un conjunto de ortoimágenes en formato GEOTIFF de 16 bits RGBI recortadas respetando la grilla de la articulación con su respectivo archivo de georreferenciación TFW.

RGBI 8 bits

Se entrega un conjunto de ortoimágenes en formato GEOTIFF de 8 bits RGBI recortadas respetando la grilla de articulación con su respectivo archivo de georreferenciación .TFW.

RGB 8 bits

Se entrega un conjunto de ortoimágenes en formato JPG de 8 bits RGB recortadas respetando la grilla de articulación con su respectivo archivo de georreferenciación JGW.

Herramientas de apoyo

Se entregan los archivos seamline en formato .SHP.

Control de calidad

Se entregan en formato .XLSX cuatro planillas con los resultados de los análisis de precisión de MDT y Ortoimágenes obtenidos a partir de las lecturas de puntos en las estaciones fotogramétricas y de los puntos de control provenientes del apoyo de campo.

8 CURVAS DE NIVEL

Las curvas de nivel son caracterizadas por isolíneas uniendo puntos de igual altitud de una región representada.

En el proyecto, las curvas de nivel fueron generadas únicamente para la Cobertura Nacional considerando la escala de mapeamiento 1:10.000.

Las curvas de nivel intermedio fueron generadas con equidistancia vertical de 2,5m y las maestras con 12,5m.

A continuación serán descritos los pasos realizados para la obtención de las curvas de nivel. Básicamente, se puede dividir el proceso en 2 (dos) fases – Generación y Edición.

8.1 Generación de las Curvas de Nivel

- La generación de las curvas de nivel fue iniciada después de la aprobación de cada remesa de la Cobertura Nacional (específicamente de los productos MDT e Hidrografía);
- Selección de los materiales fuentes para la generación de las curvas de nivel:
 Modelo Digital de Terreno, Hidrografía y Breaklines
- Importación de la nube de puntos del MDT en el software TerraScan (Terrasolid);
- Conversión de los datos vectoriales (hidrografía y breaklines) para entidad punto (formato .las) a través del software Global Mapper;
- Integración de las informaciones de hidrografía y breaklines con la nube de puntos del MDT;
- Generación de las curvas de nivel con equidistancia vertical de 2,5 metros (intermedias) y 12,5 metros (maestras) utilizando el software Terrascan (Terrasolid);

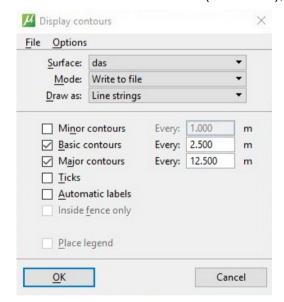


Figura 47 - Configuraciones utilizadas en la generación de las curvas de nivel.

• Después del proceso de generación, el material fue unificado en el software Global Mapper y disponibilizado para la etapa de edición cartográfica.

8.2 Edición Cartográfica de las Curvas de Nivel

 Validación de las curvas de nivel a través de las reglas topológicas disponibles en el software ArcGIS. En virtud de la limitación de los archivos se debió realizar el proceso en partes. Para ello, las áreas fueron divididas en fragmentos en orden de 300 Mb;

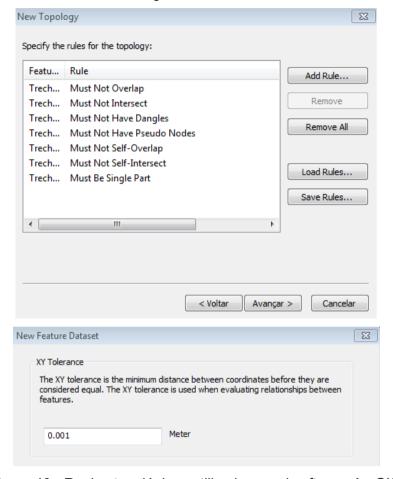


Figura 48 - Reglas topológicas utilizadas en el software ArcGIS.

- Adecuación de las inconsistencias encontradas en el proceso de validación utilizando el software AutoCAD;
- Posteriormente, el material fue importado y unificado en el banco de datos espacial (PostGIS) de modo que tenemos una base cartográfica continua;
- Modelaje de datos de acuerdo con la estructura prevista en el Catálogo de Objetos;
- Inclusión de los puntos acotados generados a partir del MDT;
- Aplicación de nuevas reglas de validación en banco de datos y adecuación de las inconsistencias. En este caso las validaciones tuvieron como objetivo principal analizar la ligación entre las remesas;
- Exportación final de productos en los formatos shapefile y banco de datos (PostGIS).

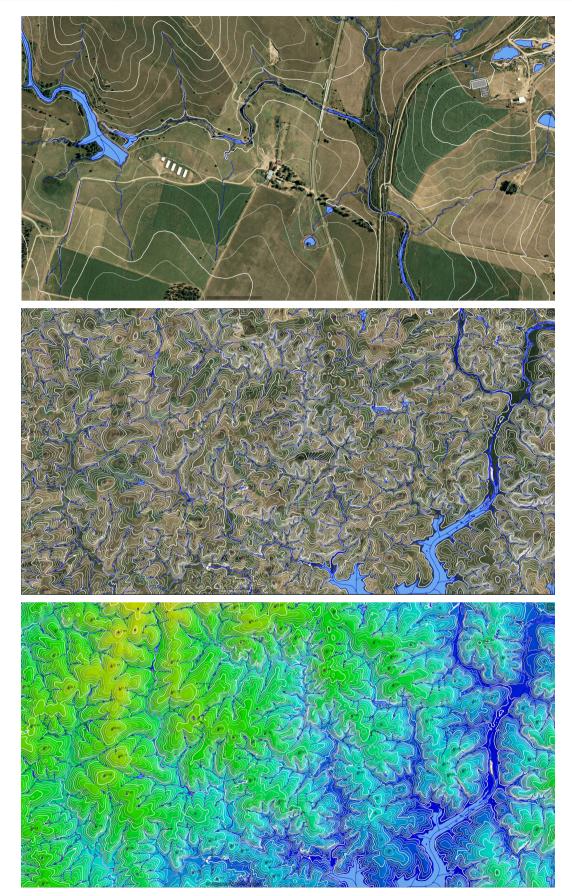


Figura 49 - Ejemplo de curvas de nivel en escala 1:10.000.

9 ÁREAS URBANIZADAS

La delimitación de las áreas urbanizadas tuvo como propósito la representación geográfica de las manchas urbanas del país de acuerdo con las normativas definidas por el contratante.

La fuente de información utilizada para la obtención de los datos fueron las ortoimágenes de la Cobertura Nacional (resolución espacial de 0,32m) Toda la captura ocurrió en ambiente 2D con el empleo del software QGIS.

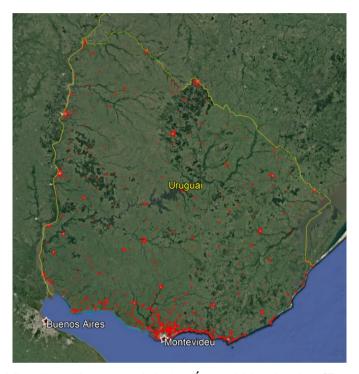


Figura 50 - Visualización general de las Áreas Urbanizadas (Fuente: Google Earth).

Figura 51 - Ejemplo delimitación de las Áreas Urbanizadas (Fuente: Google Earth).

Durante el proceso fue delimitado el polígono de cada área urbanizada, o sea, un conjunto de por lo menos 20 edificaciones, donde ninguno de ellos está localizado a más de cien metros del más próximo.

Para la caracterización de los límites fueron considerados elementos auxiliares como hidrografía, limites aparentes, calles, entre otros.

Cuando existió algún curso de agua o espejo de agua, limite aparente, calle u otro elemento que pudiese ser considerado un límite externo de polígono, a una distancia menor o igual a 100 metros de la última construcción, el referido objeto fue considerado un límite externo.

Por otro lado, cuando no existió la posibilidad de identificar ningún elemento a una distancia inferior a 100 metros, una línea virtual a 50 metros de la línea de los edificios fue trazada como límite de polígono.

El producto fue presentado en archivo único contemplando la totalidad del territorio nacional en formato .shp (Shapefile) y .gml (Geography Markup Language) con la información de la captura 2D y su respectivo metadato.

10 CUENCAS HIDROGRÁFICAS

Cuenca hidrográfica puede ser definida como la extensión de la superficie de escurrimiento de un rio central y sus afluentes, estando situada en áreas de mayores altitudes delimitadas por divisorias de aguas. Las <u>aguas</u> de lluvia pueden ser drenadas superficialmente generando los ríos y riachuelos e infiltrando en el suelo para la formación de nacientes y de la napa freática.

En este proyecto las cuencas hidrográficas fueron determinadas a partir del desarrollo de seis (6) etapas: Pre Análisis, Mosaico Modelo Digital de Terreno, Procesamiento, Edición, Integración y Validación.

Los datos del Modelo Digital de Terreno e Hidrografía de la Cobertura Nacional fueron utilizados en el proceso con la escala de mapeamiento 1:10.000. También se utilizó la base de información de las cuencas hidrográficas del Uruguay disponibilizada por la Dirección Nacional de Medio Ambiente (DINAMA).

A continuación será presentado un resumen de los pasos adoptados para la delimitación de las cuencas hidrográficas.

10.1 Pre Análisis.

A partir de la base de datos de cuencas hidrográficas de Uruguay brindadas por DINAMA fue elaborado un mapa para obtener la división de las áreas de interés teniendo como referencia la composición de las cuencas principales.

Figura 52 - Composición de las Cuencas Hidrográficas principales (DINAMA).

En la fase de Pre Análisis fueron generadas las mallas de articulación de las áreas de interés. Para la generación de esos datos fueron utilizados como referencia la articulación de las hojas de mapeamiento 1:10.000 (Cobertura Nacional).

10.2 Mosaico Modelo Digital de Terreno

Con la articulación lista se realizó el montaje de un mosaico de los Modelos Digitales de Terreno para las áreas de interés. El mosaico fue generado en el Software Global Mapper.

10.3 Procesamiento

Los mosaicos fueron exportados para el Software ArcGis para viabilizar la generación de las áreas de flujo hidrológico. La herramienta ArcHydro Tools fue utilizada para la delimitación de todas las micro-cuencas.

Figura 53 - Extensión ArcHydroTools disponible en el software ArcGIS.

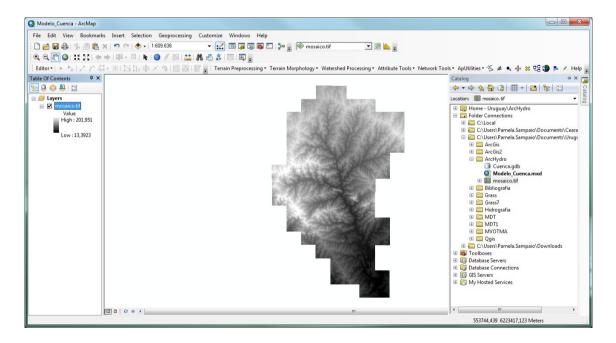


Figura 54 - Ejemplo mosaico MDT utilizado en la delimitación de las microcuencas.

SECUENCIA DE PROCESAMIENTO DE ARCHYDRO TOOLS

- Fill Sinks (rellenado)
- Flow Direction (dirección de flujo)
- Flow Accumulation (acumulación de flujo/área acumulada)
- Stream Definition (definición de flujo)
- Stream Segmentation (segmentación de flujo)
- Catchment Grid Delineation (delimitación de la grilla de captura)

- Catchment Polygon Processing (procesamiento de polígonos de captura)
- Drainage Line Processing (procesamiento de línea de drenaje)

Como resultado del procesamiento se obtienen archivos shapefile de todas las subdivisiones hidrológicas obtenidas en el área de interés.

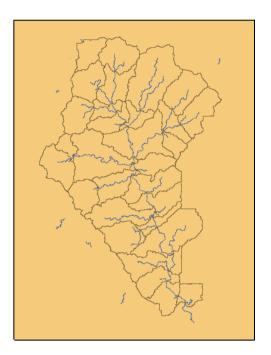


Figura 55 - Ejemplo del resultado del procesamiento de ArcHydro Tools.

Todas las etapas fueron desarrolladas utilizando los Modelo Digitales de Terreno Hidrológicamente Consistentes (MDTHC), con resolución de 2,5 x 2,5 m, considerando el sistema de referencia EPSG SIRGAS-ROU98 / UTM zona 21S (5382) y EPSG SIRGAS-ROU98 / UTM zona 22S (5383).

10.4 Edición

Los archivos shapefile resultantes del procesamiento pueden ser considerados preliminares y necesitan de tratamiento para correcciones topológicas, validación con el eje de la hidrografía y suavización de contornos.

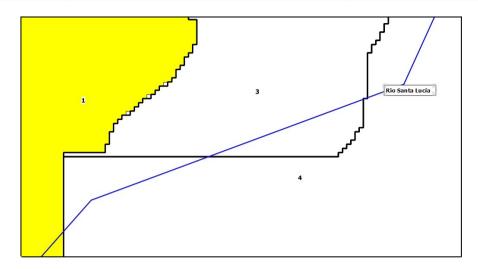


Figura 56 - Ejemplo de los resultados preliminares resultante del procesamiento de las cuencas hidrográficas.

Los ajustes fueron realizados utilizando diferentes plataformas de edición cartográfica, como AutoCAD, QGIS y Global Mapper. El resultado puede ser observado en la Figura 57.

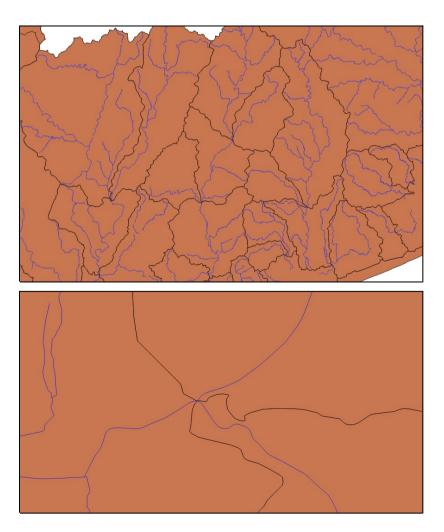


Figura 57 - Ejemplo de los resultados de la etapa de edición.

El trazado de la delimitación de las cuencas hidrográficas quedó más suavizado y coherente

con las líneas de drenaje, conforme se puede observar en la Figura 58.

Figura 58 - Ejemplo de los resultados después de la etapa de edición.

10.5 Integración

La etapa de integración contempló los siguientes pasos:

- a) Los datos fueron integrados con la red hidrográfica;
- b) Realizado el montaje de los niveles de cuencas Hidrográficas:
- c) Atribuidos los nombres de las cuencas hidrográficas en los diferentes niveles;
- d) Los datos fueron disponibilizados para la exportación e inclusión en el Banco de Datos.

10.6 Validación

La etapa final del proceso fue la validación de los datos en el banco de datos espacial PostGIS. A continuación se presentan los pasos desenvueltos en esta fase:

- a) A partir de la importación de las informaciones en el banco de datos espacial fue realizada la validación de las informaciones de cada nivel de las cuencas hidrográficas a través de la aplicación de algunas rutinas y reglas específicas, de entre las cuales:
 - Consistencia topológica: polígonos duplicados, inválidos, multipartes y nulos
 - Análisis de eje que cruza con límite de la Cuenca
 - Análisis de sobreposición

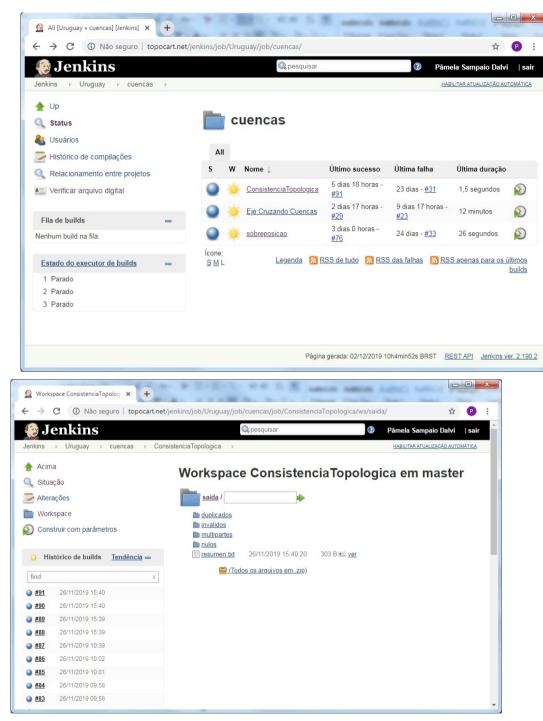


Figura 59 - Ejemplo de rutinas utilizadas en el proceso de validación en el banco de datos espacial.

- b) Corrección de las inconsistencias apuntadas en el proceso;
- c) Realizado el análisis de puntos de Confluencia;
- d) Validación del límite de las Cuencas Hidrográficas.

Es importante observar que como no fue atribuido un sistema de codificación para implantar en la Base de Datos, cuando los polígonos cumplen el límite de 100Km², ya no vuele a ser subdividido para el próximo nivel, quedando espacios vacíos en determinados niveles de detalle.

Los resultados pueden ser observados a continuación:

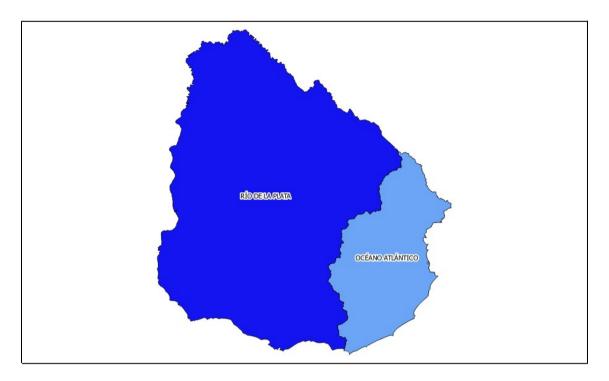


Figura 60 - Ejemplo de cuencas hidrográficas Nivel 1.

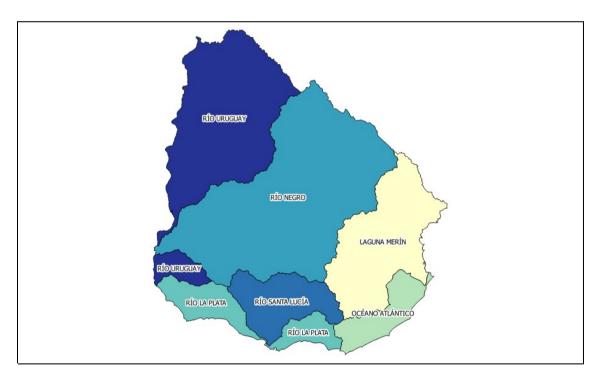


Figura 61 - Ejemplo cuencas hidrográficas Nivel 2.

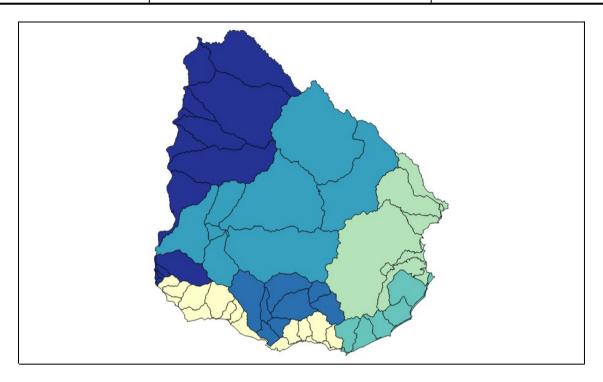


Figura 62 - Ejemplo cuencas hidrográficas Nivel 3.

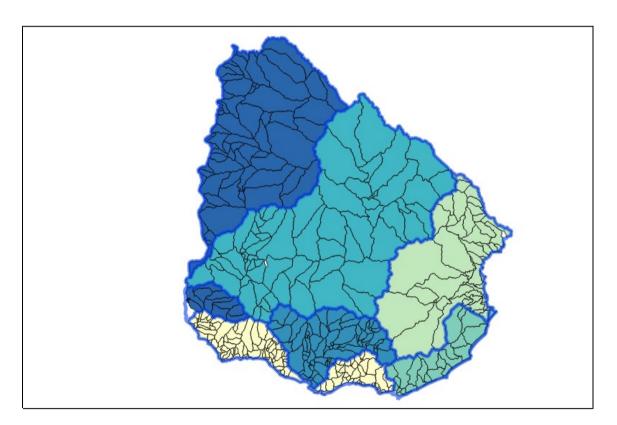


Figura 63 - Ejemplo cuencas hidrográficas Nivel 4.

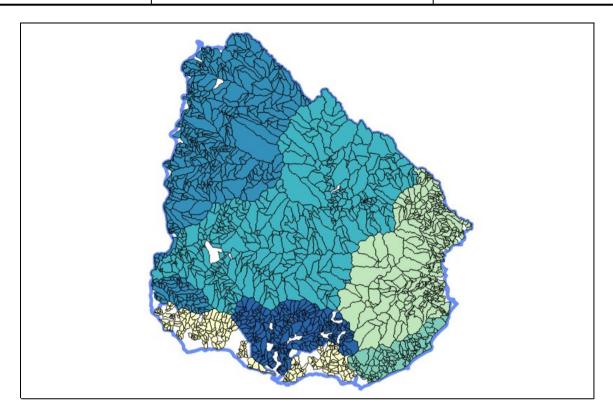


Figura 64 - Ejemplo cuencas hidrográficas Nivel 5.

11 LIMITES APARENTES

La representación de los limites aparentes fue realizada en estaciones fotogramétricas posibilitando una mejor interpretación de los elementos y la obtención de resultados más precisos.

Las informaciones fueron generadas a partir de las imágenes obtenidas en la Cobertura Nacional con resolución espacial de 32cm.

En líneas generales, fueron observados los siguientes puntos para la elaboración de productos:

- 1. Los límites entre parcelas son generalmente rectos
- 2. Cuando el límite de una parcela es un curso de agua navegable y flotable se debe dibujar hasta el espejo de agua aparente.
- 3. Cuando el límite de una parcela es un curso de agua no navegable ni flotable se debe dibujar hasta el medio del cauce aparente.
- 4. Los límites dibujados en los casos precedentes deben coincidir con la capa de hidrografía generada por la empresa para la IDEuy.
- 5. En el caso de caminos públicos las parcelas contiguas a los mismos se digitalizarán hasta los límites aparentes que existieran. Se dibujará todo camino que se encuentre en alguno de estos ítems:
 - a) Los límites de los caminos codificados por el MTOP como Corredor Internacional, Ruta Primaria, Ruta Secundaria o Ruta Terciara.
 - b) Aquellos Caminos Vecinales que se encuentran dibujados en el parcelario de referencia.
 - c) Aquellos caminos codificados como Caminería Departamental que unan claramente los definidos en a).

En todos los casos, se capturarán los elementos físicos que se puedan observar en la imagen. La superficie correspondiente a los caminos queda sin polígono asociado.

6. En el caso de vías férreas, las parcelas contiguas a las mismas se digitalizarán hasta los límites aparentes que existieran. La superficie correspondiente a las vías queda sin polígono asociado.

A continuación se presentan algunos detalles de las etapas para la determinación de los limites aparentes.

11.1 Datos fuentes

La Dirección Nacional de Catastro (DNC) disponibilizó las parcelas a ser utilizadas como referencia en el proceso de restitución aerofotogramétrica. En los datos consta la codificación de los padrones además de la determinación de los departamentos.

Figura 65 - Datos fuentes brindados por DNC.

Los datos de la hidrografía en escala 1:10.000 y las bases de información del sistema vial, ferroviario y de ríos navegables del MTOP también fueron utilizados en el proceso.

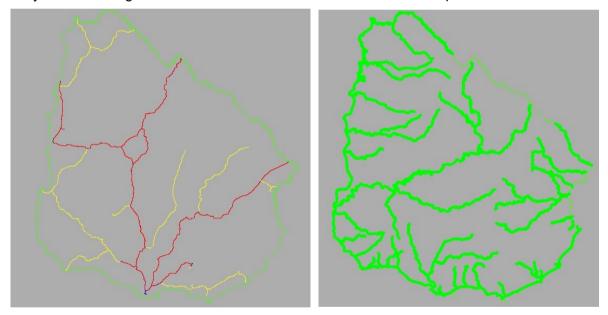


Figura 66 – A la izquierda el sistema vial y ferroviario y a la derecha los ríos navegables (Fuente: MTOP).

11.2 Restitución fotogramétrica

En las estaciones fotogramétricas fueron importados los archivos vectoriales de las parcelas a ser utilizados como referencia en la extracción de los límites junto con los datos de la hidrografía. La captura de datos fue realizada a través del software AU4 desarrollado por la empresa Cartodata.

Figura 67 – Visualización de datos en el software AU4.

Posteriormente fue realizada la restitución de los elementos físicos presentes en las imágenes clasificando cada objeto en su capa respectiva. Finalmente, los datos fueron exportados para ser revisados y editados a modo de obtener los polígonos delimitados de cada propiedad.

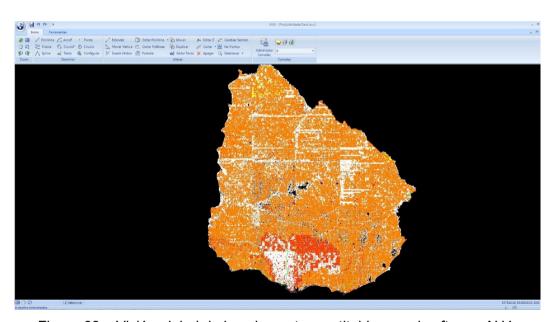


Figura 68 – Visión global de los elementos restituidos en el software AU4.

11.3 Edición

En general, el proceso de edición consistió en la obtención de los polígonos para cada parcela teniendo como referencia espacial el mapeamiento actual. Para esta instancia se desarrollaron las siguientes etapas:

a) Verificación y revisión de consistencia de los datos vectoriales.

En esta fase fueron revisados los datos vectoriales obtenidos en el proceso de restitución en relación a las ortofotos de la Cobertura Nacional a modo de verificar eventuales omisiones o excesos.

Figura 69 – Visión global de los elementos restituidos en el software AU4.

b) Generación de Topología.

Inicialmente fue realizada la selección de la hidrografía para cerrar los polígonos en los casos donde los límites confrontaban a los cursos de aguas.

A partir de aquí, fue realizado el cerramiento topológico por intermedio de rutinas específicas del software AutoCAD.

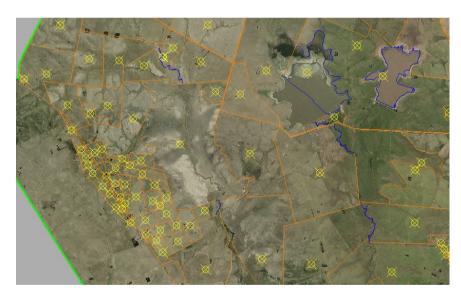


Figura 70 – Proceso de generación topológica.

c) Transcripción de los atributos de la base DNC.

Con los polígonos de cada parcela el próximo paso definido fue la trascripción de los atributos de la base de datos recibida por la DNC, teniendo como principal información el número de padrón y la denominación de los departamentos.

Esta transcripción de datos ocurrió a partir de la extracción de los atributos de los centroides en la base de datos de la DNC y transferidos para los polígonos de las nuevas parcelas utilizando el software AutoCAD.

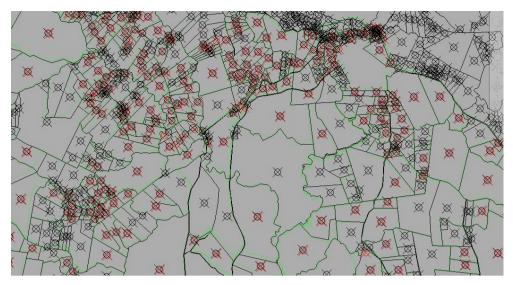


Figura 71 – Transcripción de los datos para la nueva base.

d) Control de Calidad

Todas las rutinas y reglas del control de calidad fueron generadas en el Banco de Datos geoespacial (PostGIS), entre ellas: Consistencia Lógica Poligonal, Consistencia Lógica Lineal y Consistencia de los datos.

Consistencia Lógica Poligonal

Consistencia Lógica

Consistencia Topológica

Polígonos

limites_aparentes.parcela_cerrada_a

Polígonos não devem sobrepor: 615/179137

Polígonos não devem conter geometrias inválidas: 0/179137

Polígonos não devem conter duplicatas: 0/179137

Polígonos não devem conter geometria multiparte: 0/179137

Polígonos menores que 30m²: 0/179137

Figura 72 - Rutinas de validación Consistencia Lógica Poligonal.

• Consistencia Lógica Linear

Figura 73 - Rutinas de validación Consistencia Lógica Poligonal.

Consistencia de los datos

Verificación de los atributos a través del análisis comparativo entre las informaciones de las bases de datos.

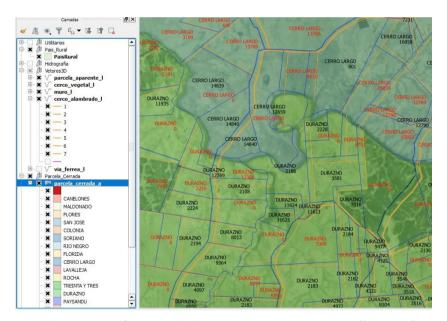


Figura 74 - Ejemplo verificación de la consistencia de datos (Padrón/Departamento)

Durante el análisis de consistencia de los datos, las regiones vacías (donde no fue posible restituir los limites debido a la ausencia de elementos físicos en la imagen) fue realizado una delimitación aproximada del parcelario a través del proceso de vectorización, clasificando al padrón con el código 999999.

De esta forma, existió una categorización diferenciada de estas parcelas en relación al polígono cuyo elemento físico no fue posible identificar.

Vale resaltar que para los casos donde los polígonos delimitados a partir de elementos físicos no tenían conexión con ningún número de padrón se le atribuyó el código valor 0 y el nombre del departamento.

Posteriormente se verificó la sobreposición de polígonos en relación al eje ferroviario. Esta sobreposición fue eliminada restituyendo los límites existentes o definiendo aproximadamente la faja de dominio.

Figura 75 – Ejemplo definición de parcelarios en relación a las vías férreas.

Después del procesamiento fue realizada la exportación final de los productos en los formatos Shapefile, GML, Banco de Datos Geoespacial adaptados a UTM zona 21S además de la generación del respectivo metadato XML.

ANEXO 01 – DEFINICIÓN Y REGLAS DE CAPTURA DE LAS CAPAS DE HIDROGRAFÍA (COBERTURA NACIONAL).

Сара	Sub-Capa	Primitiva geométrica	Definición	Reglas de captura
	Permanente	Línea	Ver en Masas de agua	Línea: SI > 100 m largo
	Secundario	Línea	Ver en Masas de agua	Línea: SI la isla que genera es > 400 m2
	Intermitente	Línea	Ver en Masas de agua	Línea: SI > 150 m largo
Objeto de agua (eje)	Canal	Línea	Ver en Masas de agua	Se capturan sólo los que están conectados con algún otro elemento de la Hidrografía Línea: < 5m de ancho. Polígono: ≥ 5m de ancho / Eje: cuando presenta ≥ 5m de ancho
	Conexión	Línea	Tramo que representa la conexión en las interrupciones del drenaje cuando haya presas, vías u otros elementos interrumpiendo el curso de agua.	Todos
Espejos de agua	Permanente	Polígono	Curso de agua permanente y natural que fluye naturalmente.	Polígono: SI > 5 m ancho (SINO eje)
	Secundario	Polígono	Curso de agua secundario es la representación aproximada de los flujos de corriente presentes en un trecho de curso de agua. En esta capa se representarán los trechos secundarios (no principales).	Polígono: SI > 5 m ancho (SINO eje)
	Intermitente	Polígono	Curso de agua que posee un volumen de agua no-constante en relación al régimen de lluvias, pudiendo ser intermitente o periódico.	Polígono: SI > 5 m ancho (SINO eje)

	Canal	Polígono	Excavación o construcción artificial sin flujo o con flujo controlado, construido con el objetivo de transportar agua.	Polígono: SI > 5 m ancho (SINO eje)
	Laguna	Polígono	Espejo de agua que tiene normalmente fluctuaciones por influencia de la marea.	Polígono: SI > 400 m2 (o 20 m x 20m)
	Lago	Polígono	Espejo de agua permanente formado por agua depositada en una depresión del terreno.	Polígono: SI > 400 m2 (o 20 m x 20m)
	Océano	Polígono	Espejo de agua salada que cubre la mayor parte de la superficie de la Tierra.	Se capturan los límites dentro del área del Proyecto.
	Embalse (espejo de agua)	Polígono	Depósito de agua formado por la acumulación de las aguas represadas para irrigación, abastecimiento u otras finalidades.	Polígono: SI > 400 m2 (o 20m x 20m) (*) La Presa que la genera se captura siempre (aún si largo Presa < 20m)
	Espejo de agua estancada / desconocida	Polígono	Espejo de agua estancada es un espejo de agua existente sobre el terreno al momento de tomada la foto que no presenta flujo de agua.	Polígono: SI > 400 m2 (o 20m x 20m)
	Actividad minera abandonada	Polígono	Incluye los espejos de agua generados por actividades mineras abandonadas que se conectan con algún otro elemento de la hidrografía.	Polígono: SI > 400 m2 (o 20m x 20m)
	Meandro abandonado	Polígono	Incluye los espejos de agua formados a causa de una alteración del curso principal de un curso de agua (meandro abandonado)	Polígono: SI > 400 m2 (o 20m x 20m)
Límite de masa de agua	Límite de masa de agua	Línea	Límite de masa de agua es la línea del contorno de las masas de agua	Se generan a partir de los polígonos de las masas de agua
Rápido / Salto	Rápido	Polígono	Sección de un río en donde el lecho tiene un gradiente relativamente escarpado lo que causa un aumento en la velocidad de la corriente de agua y turbulencia.	Polígono: SI > 625 m2 (o 25 m x 25m)
	Salto	Línea/Punto	Caída vertical o casi vertical de agua por un brusco	Se captura si se identifica en los

	1	1	1	
			desnivel del cauce.	modelos. Línea: SI > 5m ancho Punto: SI < 5m ancho
Puntos en cursos de agua	Punto hidrográfico	Punto	Punto en curso de agua es un punto que determina el inicio o fin de un tramo del eje de un curso de agua	Se capturan los puntos de acuerdo a la definición
	Confluencia	Punto	Confluencia representa la unión de dos o más tramos de cursos de agua o la desembocadura en un espejo de agua (excepto bahía, océano o ensenada)	Se capturan los puntos de acuerdo a la definición
	Isla	Polígono	Masa de tierra más pequeña que un continente y rodeada por agua	Polígono: SI > 400 m2
Islas	Zona inundable	Polígono	Humedad en el suelo donde se verifica la presencia de agua o humedad en el suelo y que inicia un curso de agua.	Tamaño mínimo 625m2 (25x25m)
	Bañado	Polígono	Terreno pobremente drenado, periódicamente inundado, excluyendo las influencias de la marea	Polígono: SI > 1HA (o 100 m x 100m)
Bañados / Áreas húmedas	Área húmeda	Polígono	Área sujeta a inundación estacional o esporádica, dependiendo de su proximidad con los cursos de agua.	Se capturan las zonas asociadas a cursos de agua que sean significativas y cumplan con la definición. Polígono: mayor a 50 HA. 100 m de ancho.
	Playa	Polígono	Área ribereña de mar, corriente de agua o espejo de agua, que por lo general se caracteriza por ser una superficie casi plana de arena, conchilla o grava.	Polígono: SI > 400 m2
Playa / Banco de arena	Banco de Arena	Polígono	Acumulación de arena, grava o conchilla, sobre el lecho o costa del mar o corriente de agua. Está sujeto a la dinámica marina o fluvial, por lo que puede ser móvil.	Polígono: SI > 400 m2

		1	i	
	Presa	Polígono / Línea	Barrera permanente a través de un espejo de agua, usada para almacenar el agua o para controlar su flujo.	Línea ≥ 20 m de largo y < 10 de ancho. Polígono ≥ 20 m de largo y < = 10 m de ancho.
	Tanque	Polígono	Depósito construido para recolección o almacenamiento de agua para consumo humano o agropecuario.	Polígono: SI > 400 m2 (o 20m x 20m)
	Dique	Polígono / Línea	Obra de ingeniería con la finalidad de mantener determinadas áreas de tierra seca en una ciudad o en el campo conteniendo o desviando un flujo de agua	Línea: De ≥ 10 m de largo < 5 m de ancho. Polígono: De ≥ 10 m de largo ≥ 5 m de ancho.
	Rambla	Polígono / Línea	Murallón que corre paralelo a la orilla del mar o de un río, con la finalidad de proteger de las aguas.	Línea ≥ 10 m de largo y < 5 de ancho. Polígono ≥ 10 m de largo y < = 5 m de ancho.
Obras civiles	Escollera	Polígono / Línea	Estructura localizada en agua destinada a proteger playas, puertos, fondeaderos, cuencas y otros elementos de las olas.	Línea ≥ 10 m de largo y < 5 de ancho. Polígono ≥ 10 m de largo y ≥ 5 m de ancho.
	Muelle	Polígono / Línea	Lugar para carga y descarga de los buques. Por lo general, es una estructura de mampostería considerable, que a menudo sirve como un rompeolas en su lado exterior al tiempo que ofrece facilidades para los navíos en su lado interior.	Planimétrico Línea ≥ 10 m de largo y < 5 de ancho. Polígono ≥ 10 m de largo y ≥ 5 m de ancho.
	Espigón	Polígono / Línea	Estructura que normalmente se proyecta hacia afuera desde la línea de costa. Protege de la erosión mediante la interrupción del movimiento de arena y otros sedimentos evitando que las ondas de las olas lleguen a la costa	Línea ≥ 10 m de largo y < 5 de ancho. Polígono ≥ 10 m de largo y ≥ 5 m de ancho.

Puerto Polígon	Lugar de la costa que cuenta con instalaciones para la protección de los barcos frente al oleaje y la marea, dispuesto para operaciones de carga y descarga de personas y mercancías	Polígono: SI > 400 m2
----------------	--	-----------------------

ANEXO 02 - DENIFINICIÓN Y REGLAS DE CAPTURA DE LAS CAPAS DE HIDROGRAFÍA (COBERTURA URBANA).

Сара	Sub-Capa	Primitiva geométrica	Definición	Reglas de captura
	Permanente	Línea	Ver en Masas de agua	Línea: SI > 30 m largo
	Secundario	Línea	Ver en Masas de agua	Línea: SI la isla que genera es > 25 m2 (5m x 5m)
	Intermitente	Línea	Ver en Masas de agua	Línea: SI > 50 m largo
Objeto de agua (eje)	Canal	Línea	Ver en Masas de agua	Se capturan sólo los que están conectados con algún otro elemento de la Hidrografía. En el caso particular de los canales de drenaje en las vías urbanas, seguir las siguientes dimensiones: Línea: < 2,5m de ancho. Polígono: ≥ 2,5m de ancho / Eje: cuando presenta ≥ 2,5m de ancho
	Conexión	Línea	Tramo que representa la conexión en las interrupciones del drenaje cuando haya presas, vías u otros elementos interrumpiendo el curso de agua.	Todos
Espejos de agua	Permanente	Polígono	Curso de agua permanente y natural que fluye naturalmente.	Polígono: SI > 2,5 m ancho
	Intermitente	Polígono	Curso de agua que posee un volumen de agua no- constante en relación al régimen de lluvias, pudiendo ser intermitente o periódico.	Polígono: SI > 2,5 m ancho

	Secundario	Polígono	Curso de agua secundario es la representación aproximada de los flujos de corriente presentes en un trecho de curso de agua. En esta capa se representarán los trechos secundarios (no principales)	Línea: SI la isla que genera es > 25 m2 (5m x 5m)
	Canal	Polígono	Excavación o construcción artificial sin flujo o con flujo controlado, construido con el objetivo de transportar agua.	
	Laguna	Polígono	Espejo de agua que tiene normalmente fluctuaciones por influencia de la marea.	Polígono: SI > 12,5 m2 (o 2,5m x 2,5m)
	Lago	Polígono	Espejo de agua permanente formado por agua depositada en una depresión del terreno.	Polígono: SI > 12,5 m2 (o 2,5m x 2,5m)
	Océano	Polígono	Espejo de agua salada que cubre la mayor parte de la superficie de la Tierra.	
	Embalse (espejo de agua)	Polígono	Depósito de agua formado por la acumulación de las aguas represadas para irrigación, abastecimiento u otras finalidades.	(*) La Presa que la
	Espejo de agua estancada / desconocida	Polígono	Espejo de agua estancada es un espejo de agua existente sobre el terreno al momento de tomada la foto que no presenta flujo de agua.	
	Actividad minera abandonada	Polígono	Incluye los espejos de agua generados por actividades mineras abandonadas que se conectan con algún otro elemento de la hidrografía.	Polígono: SI > 12,5 m2 (o 2,5m x 2,5m)
	Meandro abandonado	Polígono	Incluye los espejos de agua formados a causa de una alteración del curso principal de un curso de agua (meandro abandonado)	Polígono: SI > 12,5 m2 (o 2,5m x 2,5m)
Límite de	Límite de	Línea	Límite de masa de agua es la	Se generan a partir de

masa de	masa de agua		línea del contorno de las masas de agua	los polígonos de las masas de agua
Rápido / Salto	Rápido	Polígono	Sección de un río en donde el lecho tiene un gradiente relativamente escarpado lo que causa un aumento en la velocidad de la corriente de agua y turbulencia.	
	Salto	Línea/Punto	Caída vertical o casi vertical de agua por un brusco desnivel del cauce.	
Puntos er	Punto hidrográfico	Punto	El punto de inicio de un curso de agua corresponde al inicio del curso, pudiendo ser una naciente o no.	Se capturan los puntos de acuerdo a la definición
cursos de agua	Confluencia	Punto	Confluencia representa la unión de dos o más tramos de cursos de agua o la desembocadura en un espejo de agua (excepto bahía, océano o ensenada)	Se capturan los puntos de acuerdo a la definición
Islas	Isla	Polígono	Masa de tierra más pequeña que un continente y rodeada por agua	Polígono: SI > 25 m2
	Bañado	Polígono	Terreno pobremente drenado, periódicamente inundado, excluyendo las influencias de la marea	Polígono: SI > 50 m2 (o 2,5 m x 20m)
Bañados / Área húmeda	Área húmeda	Polígono	Área sujeta a inundación estacional o esporádica, dependiendo de su proximidad con los cursos de agua.	
	Bajo Drenaje	Polígono	Humedad en el suelo donde se verifica la presencia de agua o humedad en el suelo y que indica un curso de agua.	625m2 (25 x 25m)

Playa / Banco de arena	Playa	Polígono	Área ribereña de mar, corriente de agua o espejo de agua, que por lo general se caracteriza por ser una superficie casi plana de arena, conchilla o grava.	Polígono: SI > 25 m2
	Banco de Arena	Polígono	Acumulación de arena, grava o conchilla, sobre el lecho o costa del mar o corriente de agua. Está sujeto a la dinámica marina o fluvial, por lo que puede ser móvil.	Polígono: SI > 25 m2
	Presa	Polígono / Línea	Barrera permanente a través de un espejo de agua, usada para almacenar el agua o para controlar su flujo.	Línea: ≥ 6m de largo y < 3m de ancho Polígono: ≥ 6m de largo y ≥ 3m de ancho
	Tanque	Polígono	Depósito construido para recolección o almacenamiento de agua para consumo humano o agropecuario.	Polígono: SI > 12,5 m2 (o 2,5m x 5m)
Obras civiles	Dique	Polígono / Línea	Obra de ingeniería con la finalidad de mantenér determinadas áreas de tierra seca en una ciudad o en el campo conteniendo o desviando un flujo de agua	1 9 5 1
	Rambla	Polígono / Línea	Murallón que corre paralelo a la orilla del mar o de un río, con la finalidad de proteger de las aguas.	largo y < 2,5 de ancho
	Escollera	Polígono / Línea	Estructura localizada en agua destinada a proteger playas, puertos, fondeaderos, cuencas y otros elementos de las olas.	Línea: De \geq 5m de largo y < 2,5 de ancho Polígono: De \geq 5m de largo y \geq 2,5 ancho.
	Muelle	Polígono / Línea	Lugar para carga y descarga de los buques. Por lo general, es una estructura de	largo y < 2,5 de ancho

			mampostería considerable, que a menudo sirve como un rompeolas en su lado exterior al tiempo que ofrece facilidades para los navíos en su lado interior.	largo y ≥ 2,5 ancho.
	Espigón	Polígono / Línea	Estructura que normalmente se proyecta hacia afuera desde la línea de costa. Protege de la erosión mediante la interrupción del movimiento de arena y otros sedimentos evitando que las ondas de las olas lleguen a la costa	liardo V 2 / 5 ancho II
	Puerto	Polígono	Lugar de la costa que cuenta con instalaciones para la protección de los barcos frente al oleaje y la marea, dispuesto para operaciones de carga y descarga de personas y mercancías	Polígono: Se > 400 m²

ANEXO 03 - CATÁLOGO DE OBJETOS HIDROGRAFÍA (archivos digitales).

ANEXO 04 - CATÁLOGO DE OBJETOS CURVAS DE NIVEL Y PUNTOS ACOTADOS (archivos digitales).

ANEXO 05 - CATÁLOGO DE OBJETOS ÁREAS URBANIZADAS (archivos digitales).

ANEXO 06 - CATÁLOGO DE OBJETOS CUÉNCAS HIDROGRÁFICAS (archivos digitales).

ANEXO 07 - CATÁLOGO DE OBJETOS LÍMITES APARENTES (archivos digitales).